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Abstract

The cost of annotating training data has tradition-
ally been a bottleneck for supervised learning ap-
proaches. The problem is further exacerbated
when supervised learning is applied to a num-
ber of correlated tasks simultaneously since the
amount of labels required scales with the number
of tasks. To mitigate this concern, we propose an
active multitask learning algorithm that achieves
knowledge transfer between tasks. The approach
forms a so-called committee for each task that
jointly makes decisions and directly shares data
across similar tasks. Our approach reduces the
number of queries needed during training while
maintaining high accuracy on test data. Empirical
results on benchmark datasets show significant
improvements on both accuracy and number of
query requests.

1. Introduction

A triumph of machine learning is the ability to predict with
high accuracy. However, for the dominant paradigm, which
is supervised learning, the main bottleneck is the need to
annotate data, namely, to obtain labeled training examples.
The problem becomes more pronounced in applications and
systems which require a high level of personalization, such
as music recommenders, spam filters, etc. Several thousand
labeled emails are usually sufficient for training a good
spam filter for a particular user. However, in real world
email systems, the number of registered users is potentially
in the millions, and it might not be feasible to learn a highly
personalized spam filter for each of them by getting several
thousand labeled data points for each user.

One method to relieve the need of the prohibitively large
amount of labeled data is to leverage the relationship be-
tween the tasks, especially by transferring relevant knowl-
edge from information-rich tasks to information-poor ones,
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which is called multitask learning in the literature. We
consider multitask learning in an online setting where the
learner sees the data sequentially, which is more practical in
real world applications. In this setting, the learner receives
an example at each time round, along with its task identi-
fier, and then predicts its true label. Afterwards, the learner
queries the true label and updates the model(s) accordingly.

The online multitask setting has received increasing atten-
tion in the machine learning community in recent years
(Dekel et al., 2006; Abernethy et al., 2007; Dekel et al.,
2007; Lugosi et al., 2009; Cavallanti et al., 2010; Saha et al.,
2011; Murugesan et al., 2016). However, they make the as-
sumption that the true label is readily available to be queried,
which is impractical in many applications. Also, querying
blindly can be inefficient when annotation is costly.

Active learning further reduces the work of the annotator
by selectively requesting true labels from the oracles. Most
approaches in active learning for sequential and stream-
based problems adopt a measure of uncertainty / confidence
of the learner in the current example (Cesa-Bianchi et al.,
2006; Cavallanti et al., 2009; Orabona & Cesa-Bianchi,
2011; Dekel et al., 2012; Agarwal, 2013).

The recent work by Murugesan & Carbonell (2017) com-
bines active learning with online multitask learning using
peers or related tasks. When the classifier of the current task
is not confident, it first queries its similar tasks before re-
questing a true label from the oracle, incurring a lower cost.
Their learner gives priority to the current task by always
checking its confidence first. In the case when the current
task is confident, the opinions of its peers are ignored.

This paper proposes an active multitask learning framework
which is more humble, in a sense that both the current task
and its peers’ predictions are considered simultaneously us-
ing a weighted sum. We have a committee which makes joint
decisions for each task. In addition, after the true label of a
training sample is obtained, this sample is shared directly to
similar tasks, which makes training more efficient.

2. Problem Formulation

The problem formulation and setup are similar to (Muruge-
san et al., 2016; Murugesan & Carbonell, 2017). Suppose
we are given K tasks and the k-th task is associated with
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N, training samples. We consider each task to be a linear
binary classification problem, but the extensions to multi-
class or non-linear cases are straightforward. We use the
good-old perceptron-based update rule in which the model
for a given task is only updated when the prediction for
that training example is in error. The data for task £ is

{xk ,yk)}l ", where :c;f) € RP is the i-th instance from

the k-th task, y(l € {—1,+1} is the corresponding label
and D is the dimension of features. When the notation is
clear from the context, we drop task index k& and simply
write (29, k), y(*)). We consider the online setting where
the training example ((z®, k), y®) comes at round ¢.

Denote {w,(:)} ke[ the set of weights learned for the K
binary classifiers at round ¢. Also denote w € R¥*P the
weight matrix whose k-th row is wy. The label 7(*) is pre-
dicted based on the sign of the output value from the model.
Then the hinge loss of task & on the sample ((z®), k), y®))

y® () w,(:)>) . In ad-
dition, we also consider the losses of its peer tasks ;1 (m #
k) as 6\ = (1 —y® <x(t),w£,?>>+. ¢ indicates the
loss incurred by using task m’s knowledge/ classifier to

predict the label of task k’s training sample. El(fy)n plays
an important role in learning the similarities among tasks
and hence the committee weights. Intuitively, two tasks
should be more similar if one task’s training samples can be
correctly predicted using the other task’s classifier.

at round ¢ is given by é,(f,z = (1

The goal of this paper is to achieve a high accuracy on the
test data, and at the same time to issue as small a number
of queries to the oracle as possible during training, by effi-
ciently sharing and transferring knowledge among similar
tasks.

3. Active Multitask Learning w/ Committees

In this section we introduce our algorithm Active Multi-
task Learning with Committees (AMLC) as shown in Al-
gorithm 1. This algorithm provides an efficient way for
online multitask learning. Each task uses not only its own
knowledge but also knowledge from other tasks, and shares
training examples across similar tasks when necessary. The
two main components of Algorithm 1 are described in Sec-
tion 3.1 and 3.2. In Section 3.3, we compare AMLC with
the state-of-the-art online multitask learning algorithm.

3.1. Learning with Joint Decisions

We maintain and update a relationship matrix T € RE*K
through the learning process. The k-th row of 7, denoted 7y,
is the committee weight vector for task k, also referred to as
committee for brevity. Element 7;; of the relationship matrix
indicates the closeness or similarity between task ¢ and task

Algorithm 1 Active Multitask Learning with Committees

1: function AMLC b, C,T)
2 Imtlallzew =0p,Ym € [K]|, T ) — %1KX1<
3 fort=1,2,..,7 do
4: Receive( ® k)
5: Compute p{) = (z® w™V) form € [K]
6 p= Zme pk'r)n lgfn Y
7 Predlcty(” = sign(p)
®) ~
8 Draw P Bernoulli ( 5l
9: if P = 1 then
10: Query true label y® and set M) =1 [y(t) £ g)(t>]
11: Update w,(:) = w,itfl) + PO MOy O
12: Update 7:
1(®)
o drect
Tom = m KO ,m € [K]
t—1 _ km,
Zm '€[K] Tlgm/ )6 «
13: for Ym € [K], andm;ékdo
14: Set S =1 [s1gn (p STRTIRN T(t> > T<t)]
15: Update wi) = $f, by Sﬁ,?y(t)x(t)
16: end for
17: end if
18:  end for

19:  return 7Vw®
20: end function

7, and also the importance of task j in task 7’s committee
in predicting. Given a sample ((z(®), k), y™®)) at round ¢,
the confidence of task k is jointly decided by its commit-

tee; namely, a weighted sum of confidences of all tasks,

P = oneix) PhomThm » where pi), = (@, wii™")

m € [K]. Each confidence is just the common confidence
measure for perceptron, using distance from the decision
boundary (Cesa-Bianchi et al., 2006). The prediction is
done by taking the sign of the confidence value. The learner
then makes use of this confidence value by drawing a sam-
ple P® from a Bernoulli distribution, to decide whether to
query the true label of this sample. The larger p is, the more
likely for P(*) to be 0, signifying greater confidence. The
hyperparameter b controls the level of confidence that the
current task has to have to not request the true label.

for

The learner only queries the true label when the current
task’s committee turns out to be unconfident. Another bi-
nary variable M (") is set to be 1 if task k& makes a mistake.
Subsequently, its weight vector is updated following the
conventional perceptron scheme. The learner then updates
the relationship matrix following a similar policy as in (Mu-
rugesan et al., 2016; Murugesan & Carbonell, 2017). For
tasks that incur no loss on this example, their weights in the
committee are not changed. On the other hand, for tasks
that incur non-zero loss, their weights are decreased by a
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Models Landmine Detection Spam Detection Sentiment
Accuracy #Queries Accuracy #Queries Accuracy #Queries
Random 0.8914 +0.0126 2323.5+11.5 0.7940 +0.0131 751.8 +14.3 0.6068 +0.0065 1092.0 +16.4
Independent 0.9070 +0.0079  2770.3 +25.8  0.8232 +0.0159 1188.6 +6.6 0.6404 +0.0050 1987.5 7.1
PEER 0.9362 +0.0025 1206.0 +23.2 0.8334 +0.0134 1085.7 +13.9 0.6425 +0.0067 1979.7 +10.3
PEER+Share  0.9231 +o0.0112 1885.8 +71.3 0.8766 +0.0135  935.3+18.3  0.7645 +o0.0077  1754.5 +9.2
AMLC 0.9367 +o0.0020 189.1 +12.0 0.8706 +0.0102 321.3+15.6 0.7358+0.00903 633.9+11.4

Table 1. Accuracy on test set and total number of queries during training over 10 random shuffles of the training examples. The
95% confidence level is provided after the average accuracy. The best performance is highlighted in bold. On Spam Detection, both
PEER+Share and AMLC are highlighted because AMLC has a lower mean but also smaller variance.

factor exp(—C - l,(:gl /A). The hyperparameter C' decides
how much decrease happens on the weight given non-zero

loss, and \ = ZK 1o

. m=1"km"
normalized to sum to 1.

These new weights are then

3.2. Data Sharing

To further encourage data sharing and information transfer
between similar tasks, after the true label is obtained, the
learner also shares the data with similar tasks of task k, so
that peer tasks can learn from this sample as well. Similar
tasks are identified by having a larger weight than the current
task in the committee. We set S,(ﬁ) = 1 to indicate task m is
a similar task to k and thus the data is shared with it.

3.3. Comparison with PEER

The most related work to ours is active learning from peers
(PEER) (Murugesan & Carbonell, 2017). In this section we
discuss the main difference between our method and theirs
with some intuition.

Firstly, we do not treat the task itself and its peer tasks sep-
arately. Instead, the final confidence of the current task is
jointly decided using the confidences of all tasks, weighted
by the committee weight vector. It is humble in a sense that
it always considers its peer tasks’ advice when making a
decision. There are two main advantages of our approach.
1) For PEER, no updates happen and no knowledge is trans-
ferred when the current task itself is confident. This can
result in difficulties for the learner to recover from being
blindly confident. Blind confidence happens when the clas-
sifier makes mistakes on training examples but with high
confidence, especially in early stage of training when data
are not enough. 2) Our method updates the committee
weight vector while keeping ), (k] Thm = 1 instead of
Zme[KLm#k Tkm = 1. It then becomes possible that the
current task itself has an equal or lower influence than other
tasks on the final prediction. This is more desirable because
identical tasks should have equal weights, and information-
poor tasks should rely more on their information-rich peers

when making predictions.

Secondly, our algorithm enables the sharing of training data
across similar tasks directly, after acquiring the true label
of this data. Querying can be costly, and the best way to
make use of the expensive label information is to share it.
Assuming that all tasks are identical, the most productive
algorithm would merge all data to learn a single classifier.
PEER is not able to achieve this because each task is still
trained independently, since tasks only have access to their
own data. Though PEER indirectly accesses others’ data
through querying peer tasks, this sharing mechanism can be
insufficient when tasks are highly similar. In the case that all
tasks are identical, our algorithm converges to a relationship
matrix with identical elements and eventually all tasks are
trained on every example that has been queried.

4. Experiments

In this section, we evaluate our proposed algorithm on three
benchmark datasets for multitask learning, and compare our
performance with many baseline models. We set b = 1 for
all the experiments and tune the value of C' from 20 values
using 10-fold cross validation. Unless otherwise specified,
all other model parameters are chosen via 10-fold cross
validation.

4.1. Benchmark Datasets

Landmine Detection' consists of 19 tasks collected from
different landmine fields. Each task is a binary classification
problem: landmines (+) or clutter (-), and each example
consists of 9 features. Spam Detection® consists of labeled
training data: spam (+) or non-spam (-) from the inboxes
of 15 users, and each user is considered as a single task.
Sentiment Analysis® (Blitzer et al.) consists of product re-

'http://www.ee.duke.edu/~1lcarin/
LandmineData.zip

http://ecmlpkdd2006.0rg/challenge.html

http://www.cs. jhu.edu/~mdredze/datasets/
sentiment/


http://www.ee.duke.edu/~lcarin/LandmineData.zip
http://www.ee.duke.edu/~lcarin/LandmineData.zip
http://ecmlpkdd2006.org/challenge.html
http://www.cs.jhu.edu/~mdredze/datasets/sentiment/
http://www.cs.jhu.edu/~mdredze/datasets/sentiment/

Active Multitask Learning with Committees

Accuracy
o o
[=)] ~
” =)

o
o
o

o
o
vl

/o

g andom go7s
5 Independent ]
g PEER go.70
< go
PEER+Share
AMLC 0.65
AMLC w/
budgets left 0.60
92 185 278 371 464 90 180
Q%)  (4%)  (6%)  (8%)  (10%) 6%)  (12%)

Query budgets

Query budgets

270 360 450 132 264 396 528 660

(18%)  (24%)  (30%) (6%) (12%)  (18%)  (24%)  (30%)

Query budgets

Figure 1. Accuracy on test set w.r.t. query budget. Left, middle and right are Landmine Detection, Spam Detection and Sentiment
respectively. The filled markers indicate that there are still queries left in the budget.

views from Amazon containing reviews from 22 domains.
We consider each domain as a binary classification task:
positive review (+) and negative review (-). Details about
our training and test sets are shown in Appendix A.

4.2. Results

We compare the performance of 5 different models. Ran-
dom does not use any measure of confidence. Namely,
the probability of querying or not querying true label are
equal. Independent uses the confidence which is purely
computed form the weight vector of the current task. Ob-
viously both Random and Independent have no knowledge
transfer among tasks. PEER is the algorithm from (Muruge-
san & Carbonell, 2017). AMLC (Active Multitask Learning
with Committees) is our proposed method as shown in Al-
gorithm 1. In addition, we also show the performance of
PEER+Share, in which we simply add to PEER the data
sharing mechanism as illustrated in section 3.2.

Table 1 shows the accuracy on test set and the total number
of queries (label requests) to oracles during training of five
models. Each value is the average of 10 random shuffles of
the training set. The 95% confidence level is also shown.
Notice that our re-implementation of PEER achieves similar
performance on the Landmine and Spam datasets but seems
to perform worse on Sentiment. The reason is that we are
using a different representation of the training examples. We
use the default bag-of-words representation coming with the
dataset and there are approximately 2.9M features.

The highlighted values illustrate the best performance across
all models. On Spam Detection, AMLC is also highlighted
because it is more confident about its accuracy even though
the actual value is slightly lower than PEER+Share. It can be
seen that our proposed methods (PEER+Share and AMLC)
significantly outperform the the others. PEER has better
performance compared to Random and Independent but still
behaves worse than PEER+Share and AMLC. It can be
shown that simply adding data sharing can improve both ac-

curacy and number of queries used during training. The only
exception is on Landmine Detection, where PEER+Share
requests more queries than PEER. Though simply adding
data sharing results in improvement, after learning with joint
decisions in AMLC, we observe further drastic decrease on
the number of queries, while maintaining a high accuracy.

Another goal of active multitask learning is to efficiently
make use of the labels. In order to evaluate this, we give
each model a fixed number of query budget and the training
process is ended after the budget is exhausted. We show
three plots (one for each dataset) in Figure 1. Based on the
difficulty of learning from each dataset, we choose differ-
ent budgets to evaluate (up to 10%, 30% and 30% of the
total training examples for Landmine, Spam and Sentiment
respectively). We can see that given a limited number of
query budgets, AMLC outperforms all models on all three
datasets, as a result of it encouraging more knowledge trans-
fer among tasks. It is worth noting that the Landmine dataset
is quite unbalanced (high proportion of negative labels), and
PEER+Share and AMLC can achieve high accuracy with
extremely limited number of queries. However, the classi-
fier learned by PEER+Share is unconfident and thus it keeps
requesting true labels in the following training process.

5. Conclusion

We propose a new active multitask learning algorithm that
encourages more knowledge transfer among tasks com-
pared to the state-of-the-art models, by using joint deci-
sion/ prediction and directly sharing training examples with
true labels among similar tasks. Our proposed methods
achieve both higher accuracy and lower number of queries
on three benchmark datasets for multitask learning prob-
lems. Future work includes theoretical analysis of the error
bound and comparison with those of the baseline models.
Another interesting direction is to handle unbalanced task
data. In other words, one task has much more/less training
data than the others.
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Appendix

We describe in details about the three datasets and the
train/ test split used for the experiments. The description is
adapted from (Murugesan et al., 2016; Murugesan & Car-
bonell, 2017).

A. Dataset Details

Landmine Detection consists of 19 tasks collected from
different landmine fields. Each task is a binary classifica-
tion problem: landmines (+) or clutter (-) and each example
consists of 9 features extracted from radar images with four
moment-based features, three correlation-based features,
one energy ratio feature and a spatial variance feature. Land-
mine data is collected from two different terrains: tasks 1-10
are from highly foliated regions and tasks 11-19 are from
desert regions; therefore tasks naturally form two clusters.
Any hypothesis learned from a task should be able to utilize
the information available from other tasks belonging to the
same cluster.

Spam Detection is obtained from ECML PAKDD 2006
Discovery challenge for the spam detection task. We used
the task B challenge dataset which consists of labeled train-
ing data from the inboxes of 15 users. We consider each user
as a single task and the goal is to build a personalized spam
filter for each user. Each task is a binary classification prob-
lem: spam (+) or non-spam (-) and each example consists of
approximately 150K features representing term frequency
of the word occurrences. Since some spam is universal to
all users (e.g. financial scams), some messages might be
useful to certain affinity groups, but spam to most others.
Such adaptive behavior of users interests and dis-interests
can be modeled efficiently by utilizing the data from other
users to learn per-user model parameters.

Sentiment Analysis contains product reviews from many
domains on Amazon (Blitzer et al.). We consider each do-
main as a binary classification task. Reviews with rating >
3 are labeled positive (+), those with rating < 3 are labeled
negative (-), and reviews with rating = 3 are discarded as the
sentiments are ambiguous and hard to predict. We choose
22 domains which have enough data for both positive and
negative labels. We use the default preprocessed bag-of-
words representation that comes with the dataset and each
example consists of approximately 2.9\ features.

We choose 3040 examples (160 training examples per task)
for landmine, 1500 emails for spam (100 emails per user
inbox) and 2200 reviews for sentiment (100 reviews per do-
main) for our experiments. For landmine and spam, we use
the rest of the examples for test set, and for sentiment, we
select another 300 (using all remaining data if not enough)
examples for test set. On average, each task in landmine,

spam, sentiment has 509, 400 and 395 examples respectively.
Note that we intentionally keep the size of the training data
small to drive the need for learning from other tasks, which
diminishes as the training set per task becomes larger.



