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Task: Intent Inferral for Stoke ChatEMG: an Autoregressive Generative Model for EMG Signals
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ChatEMG Model Architecture Results and Discussion

ChatEMG is based on decoder-only transformers.

It has two branches: the self branch that takes in the
first channel (C1) and the context branch that takes in
all 8-channel EMG signals.

and the original limited dataset.

The synthetic samples generated by ChatEMG are
classifier-agnostic and can improve intent inferral
accuracy for different types of classifiers.
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Context | _ ChatEMG can capture the characteristics of EMG signals, such as ~ We are the first to deploy an intent classifier trained
SMBSCENG | £ N, the amplitude, frequency, fluctuation pattern, etc. ChatEMG can partially on synthetic data for functional control of
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