

Jingxi Xu*, Runsheng Wang*, Siqi Shang*, Ava Chen, Lauren Winterbottom, To-Liang Hsu, Wenxi Chen, Khondoker Ahmed, Pedro Leandro La Rotta, Xinyue Zhu, Dawn M. Nilsen, Joel Stein, Matei Ciocarlie

ChatEMG: Synthetic Data Generation to Control a **Robotic Hand Orthosis for Stroke**

ChatEMG: an Autoregressive Generative Model for EMG Signals

Stage 3: Classifier Training and Intent Inferral Any classifiers Intent inferral on the orthosis --- Ground truth Prediction

Results and Discussion

The synthetic samples generated by ChatEMG are classifier-agnostic and can improve intent inferral accuracy for different types of classifiers.

ChatEMG is trained on large offline data from different conditions, sessions, and subjects.

Stage 2

We use ChatEMG to expand a limited dataset from new context with synthetic samples.

Stage 3

We train intent inferral classifiers using both the synthetic samples and the original limited dataset.

ChatEMG leverages a vast repository of offline data via generative training, and can generate condition-, session- and subject-specific synthetic data via prompting.

We are the first to deploy an intent classifier trained partially on synthetic data for functional control of an orthosis by a stroke survivor.