
Hybrid HW/SW CPU Simulation
using Zync

Jingxi Xu

4th Year Project Report
Computer Science and Electronics

School of Informatics
University of Edinburgh

2017

3

Abstract
Software simulation of modern microprocessors can be implemented very efficiently
using a functional-first approach and then a cycle-accurate model. However, the im-
plementation of cache model can sometimes slow down the simulation process. The
goal of this project is to implement the cache model in hardware rather than software,
to evaluate if the speed of simulation can be improved and to what extent. I use the
Zybo board, with a dual-core ARM Cortex A9 system and a FPGA fabric on it. The
A9 core will run the software part of the ArcSim simulator while offloading its cache
model to the FPGA fabric.

For the cache module designed in this project, it surprisingly turns out to be a slow-
down compared to implementing the same logic in pure software. But this is because
of the simplicity of the cache design. With the analysis on the AXI interface, I firmly
believe that the more logic we implement in hardware, the more delay in AXI interface
can be compensated and we can finally get a speed-up.

Since the cache module designed in this project does not achieve a speed-up on its own,
there must be no improvement on speed if integrated into ArcSim. In this dissertation,
however, I do a prediction on what is the maximum possible improvement of speed if
we have enough logic on hardware and what is the relationship between the speed-up
of a cache model and the speed-up of the whole simulator.

4

Acknowledgements

I would like to thank:

Prof. Nigel Topham for patiently supervising me through the year. He not only
teaches me how to handle technical problems but also inspires me on how to be a good
researcher and engineer.

Dr. Boris Grot for coordinating project group meetings and giving me valuable feed-
back on my project.

my parents for supporting me all the time.

Table of Contents

1 Introduction 7
1.1 Overview . 7
1.2 Motivation . 8
1.3 Contributions . 10
1.4 Outline . 11

2 Evaluation of Previous Work 13
2.1 FPGA-based Simulation . 13
2.2 Hardware Accelerator Advantages and Limits 14
2.3 Other Related Literature Review . 15

3 Background 17
3.1 ArcSim . 17
3.2 Cache Architecture . 18

3.2.1 Cache Organization . 18
3.2.2 Cache Addressing . 18
3.2.3 Replacement Policy . 19
3.2.4 Write Policy . 19

3.3 Zynq-7000 All Programmable SoC 19
3.3.1 Zynq-7000 Family Architecture 20
3.3.2 PS-PL Interfaces . 21
3.3.3 Another Overview of This Project 22

3.4 AMBA AXI Protocol . 23
3.4.1 AXI Architecture . 23
3.4.2 Two-way Handshake Mechanism 24

4 System Setup 27
4.1 Boot Linux on ARM Cortex-A9 CPUs 27
4.2 SSH Across Different Networks . 27
4.3 Mount Filesystem . 28

5 Implementation 31
5.1 Cache in Verilog . 31

5.1.1 Cache Design . 31
5.1.2 Cache Implementation . 35

5.2 Create Custom AXI Slave Peripheral 37

5

6 TABLE OF CONTENTS

5.3 Call Hardware Cache Model From Software Driver 37

6 Test and Evaluation 39
6.1 Time Types for Benchmarking Program 39
6.2 Evaluation of AXI Interface Time Cost 39

6.2.1 Method . 40
6.2.2 Results . 42
6.2.3 Discussion . 43

6.3 Software Cache Simulation vs. Hybrid Cache Simulation 43
6.3.1 Validation . 44
6.3.2 Results . 44
6.3.3 Discussion . 45

6.4 Prediction on Potential Speed-up for ArcSim 46
6.4.1 Implementation . 46
6.4.2 Results . 47
6.4.3 Discussion . 47

7 Conclusion 51
7.1 Summary . 51
7.2 Critical Analysis . 51

7.2.1 Difficulties Handled . 52
7.2.2 Possible Improvement . 52

Appendix A Verilog Code for Cache Module 55

Appendix B Test Bench Code for Cache Module 61

Appendix C Software Cache vs. Hardware Cache 63

Bibliography 69

Chapter 1

Introduction

1.1 Overview

As said by [CSS+06], being able to accurately and quickly predict properties of com-
puter systems is important for architects, designers, software developers and users of
computers. Simulators can provide us with a window into inner workings of a com-
puter and because they do not have the constraints as a real implementation, they can
be made easier to probe, examine and modify.

Two most important properties of a system simulator are fast and accurate to cycle
level resolution; however, it is hard to have both as the more detailed information we
need, the more complex this simulator’s architecture will be, so the speed is affected
[CSS+06, KVBW+12]. Some conventional wisdom even says that no simulators can
simultaneously have both two properties while also being complete, transparent, cheap
and easy to create [CSS+06].

In this project, I am trying to figure out a hybrid hardware/software simulation way
to help ArcSim simulator to achieve both fastness and cycle-accurateness, similar to
the work done by [CSS+06].

ArcSim [Insa], written in C++, is a high-speed functional and cycle-accurate1 instruc-
tion set simulator2 of the Encore [Insb] processor.

1A cycle-accurate simulator is a computer program that simulates a microarchitecture on a cycle-by-
cycle basis. It must ensure that all operations are executed in the proper virtual (or real if it is possible)
time — branch prediction, cache misses, fetches, pipeline stalls, thread context switching, and many
other subtle aspects of microprocessors [Wik17].

2An instruction set simulator (ISS) is a simulation model, usually coded in a high-level programming
language, which mimics the behaviour of a mainframe or microprocessor by “reading” instructions and
maintaining internal variables which represent the processor’s registers [Wik15].

7

8 Chapter 1. Introduction

When simulating the target microarchitecture under cycle-accurate mode, the ArcSim
first runs a functional simulation to interpret each instruction, and during this time,
some timing information such as the number of cycles of memory access and the num-
ber of cycles of execution stage, will be recorded in the inst object corresponding
to each instruction. Those information is then passed to the cycle model through the
inst objects to provide detailed latency statistics. Inside the cycle model, as you can
probably guess, there is a cache model which simulates the behaviour of cache, con-
tributing to the cycle-accurate information we need, and that is what this project will
mainly focus on.

Instead of running the whole simulator on a DICE machine, this project will run it on a
Zybo board while at the same time, splitting it into two parts, implemented in hardware
and software respectively. The cache model will be implemented in hardware (FPGA)
and the other parts of this simulator will be run on the dual-core ARM Cortex A9
system (capable of running Linux) of the board. Figure 1.1 gives us a clear skeleton of
this project.

For more details on ArcSim, see section 3.1.

Figure 1.1: Overview of This Project

1.2 Motivation

When we run the functional simulation (see section 3.1 for details) of ArcSim using a
little executable program called speed, we get the following execution profile shown
in figure 1.2:

1.2. Motivation 9

Figure 1.2: Functional Simulation

Figure 1.3: Cycle-accurate Simulation

10 Chapter 1. Introduction

Then, if we enable the cycle-accurate mode (see section 3.1 for details), we get another
profile shown in figure 1.3.

We can see that the functional simulation takes 23.84 seconds to finish while the cycle-
accurate simulation takes 47.96 seconds, almost twice as much as it takes for a func-
tional simulation. That is because after the cycle-accurate mode is enabled, the sim-
ulator has to do a large amount of extra calculation to get the delay information of
this processor. It is probably intuitive to say that cache model contributes a lot to the
slow-down of cycle-accurate simulation because for each instruction, we run instruc-
tion cache model to return the number of cycles it takes and similarly, for each memory
access instruction, the data cache model is executed. It is also proven in section 6.4 that
cache model contributes a lot to the slow-down of cycle-accurate simulation. Hence,
if we want to improve the performance of cycle-accurate simulation of this simulator,
it would be a good idea to first focus on improving the performance of cache model.

Since previous evaluation done by Rowson [Row94] has indicated that a hardware/-
software co-simulation will have a better performance in terms of speed for a cycle-
accurate model, it is worth trying to offload cache model in hardware, for instance,
a FPGA fabric. Hence, instead of letting a CPU do the computational jobs cycle by
cycle, which usually takes longer time and consumes higher amount of energy, we can
directly implement those computational tasks on hardware.

In this project, I intend to develop a simple data cache model (always a good idea to
start with something simple) in FPGA for this simulator and carry out evaluation on
the speed of this hardware model compared to its software counterpart implementing
the same logic. If the hardware model does show a speed-up, I will try to integrate
it with ArcSim to see the overall performance. I also intend to evaluate the interface
between software and hardware so that I can gain a better idea of whether the speed
can be improved and to what extent. If the performance of cycle-accurate simulation
is indeed improved or show a trend to be improved with just a little more future work,
we may probably offload more elements of the simulator to hardware.

This project will give more motivation and numerical guide for future designers to
work on this subject — hybrid hardware/software simulation.

1.3 Contributions

My contributions to this project mainly consists of the following points:

• Critically review previous work on this topic.

• Boot Linux on the dual-core ARM Cortex A9 system.

• Design and implement cache in hardware using Verilog.

• Design and implement the interface between the software simulation and the
hardware simulation of cache.

• Evaluate the time cost of interface between hardware and software.

1.4. Outline 11

• Evaluate the performance of hardware cache model compared to its software
counterpart.

• Evaluate the potential speed-up of the whole simulation system.

• Critically analyse my own work and propose appropriate future work for this
subject.

1.4 Outline

The rest of the report is structured as follows:

Chapter 2 Evaluates some previous related research to gain a preliminary under-
standing of this topic and discusses what aspects from them can be applied to this
project.

Chapter 3 Explains how I set up the system for this project and what difficulties I
encounter during this process.

Chapter 4 Introduces some necessary fundamental terminologies, concepts and back-
ground knowledge for readers to better understand the general idea of this project.

Chapter 5 Describes in more details on how hardware cache module and interfaces
are designed and implemented.

Chapter 6 Presents evaluation of the delay in hardware and software interface. Eval-
uates the performance of a simple hybrid simulation calling hardware cache module.
Predicts potential performance improvement of the hybrid ArcSim simulator.

Chapter 7 Critically illustrates what has been done, what could have been done but
is not because of time limitation, which part of this project should have been done
in a better way and what aspect of this topic should be a major concern for future
researchers.

Appendices and Bibliography

Chapter 2

Evaluation of Previous Work

2.1 FPGA-based Simulation

Khan et al. [KVBW+12] have well presented their work to implement a fast and
cycle-accurate modelling of a multicore processor on FPGA called Arete. As with
the increase of demand for design exploration and accurate performance estimates in
modern simulators, more detailed models are required. This paper points out that even
though FPGA-based simulators have drastically higher speed than software simulators,
sacrificing fidelity is common.

As the aim of this project is to develop a hybrid hardware/software simulator, the main
difficulties tackled by [KVBW+12] for FPGA-based simulation will also be the main
focus of this project:

• Programmability: FPGAs are typically programmed in low-level RTL languages
like Verilog, so the design is much less straightforward than software design us-
ing high-level programming languages and the architecture would be very in-
flexible.

• Resource management: Unlike software design, FPGA-based implementation
has hard-resource constraints. Even though the logic of the design is correct but
it does not fit into a particular FPGA if this logic overuses hardware resources
such as LUTs, I/Os.

• Interfacing with off-chip memory or host PC: This problem would be of a bigger
concern in this project than how it appears in [KVBW+12]. A key factor of
this project is whether our speed-up in hardware can offset the time wasted in
the interface. In addition, the problem of interfacing for this project is not with
off-chip memory or host PC, but is between the simulator running on embedded
Linux with hardware cache module on FPGA.

This paper also points out the key challenge for hardware-software co-design, which is
to figure out the optimal hardware-software partitioning of algorithms for performance
and power efficiency.

13

14 Chapter 2. Evaluation of Previous Work

[CSS+06] does a good job in hardware-software co-design. It partitions a simulator
into a software component and a hardware component implemented in FPGAs, and
the resulting simulators are capable of 1M to 100M cycles per second and full cycle-
accuracy.

2.2 Hardware Accelerator Advantages and Limits

Shand, Bertin and Vuillemin’s paper [SBV91] provides some insights in the the use
of harware accelerator and its limits. They present experiments in hardware/software
design trade-off met in improving the speed of long integer multiplications by using
PAM (Programmable Active Memory) [BRV89].

They state that in some intense computational task, the program contains a relatively
simple inner loop which performs the bulk of this computation. Increasing the speed of
this loop through hardware can lead to dramatic performance improvements. The paper
mentions some application making use of such dedicated hardware such as floating
point coprocessors, vector coprocessors, graphic coprocessors, etc. In the context of
this project, cache model is the inner loop as it is frequently called by the program to
achieve cycle-accurate simulation. We are trying to develop a hardware accelerator for
implementing the cache model.

The authors also evaluate the limits of hardware accelerators. The main limit to perfor-
mance achievable by hardware accelerators comes from the available communication
bandwidth to the host and this limit is perfectly consistent with the third implementa-
tion difficulty presented by [KVBW+12]. In addition, [SBV91] makes another similar
point that most of the work to develop a hardware accelerator goes into finding ap-
propriate trade-offs between hardware and software processing in order to keep our
application within the available bandwidth. It seems that deciding on how much com-
putation to offload to hardware and evaluation on software and hardware interface time
cost are quite necessary for this project.

Another limit demonstrated by [SBV91] is the economic consideration which requires
using as little hardware resource as possible as a result of limitation on hardware re-
source. This limit is similar to the second difficulty mentioned in [KVBW+12]. To
comply with this rule, we should not offload the part of simulator which is infrequently
used but requires a lot of hardware to achieve useful speed-up. That being said, using
programmable hardware is still more economically attractive than its alternative —
using super-computers.

Moreover, [Row94] gives another drawback of the co-simulation system, and that is
the difficulty of debugging the system with a hardware accelerator, especially when the
hardware design is big and complex. In this project, every time we modify our hard-
ware design, even just a little bit, we need to go through a lot of tedious steps (package
IP, report IP status, generate output product, create HDL wrapper, etc.) to create the
bitstream and then export it to FPGA. The synthesis process in Vivado, in particular,
takes an extremely long time compared to compiling a software program. After this,
we need to operate on the embedded Linux to see the results of the whole system. The

2.3. Other Related Literature Review 15

most efficient way to handle this problem is by modularizing our system into different
parts and figure out a way to test each part to guarantee its correct functionality. In this
way, the possibility of error occurring when testing the whole system is reduced to a
large extent.

2.3 Other Related Literature Review

Paper [HHKC12, CCL05, AB86, SP05, PWKR02, VPNH10, DO04] also make use of
hardware accelerators to improve the performance of speech recognition algorithms,
real-time image feature extraction, artificial neural networks, etc. Most of them are
based on FPGA and do get an impressive performance. Even though they are not
explicitly explained as some other references in this dissertation, they contribute a lot
to my understanding of this project and inspire my thoughts and ideas.

Chapter 3

Background

3.1 ArcSim

As said at the start of this dissertation, ArcSim [Insa] is a high speed functional and
cycle-accurate instruction set simulator of the Encore [Insb] processor written in C++.
It primarily has the following modes of simulation:

• Functional simulation: Most basic mode, just returns number of interpreted in-
structions, simulation time and rate of simulation. This is the default mode of
simulation.

• Cycle-accurate simulation: This mode allows for cycle-accurate simulation of
our microarchitecture, providing very detailed latency statistics for each instruc-
tion.

• High-speed simulation: This mode uses Just-In-Time (JIT) Dynamic Binary
Translation (DBT) techniques to perform very high speed functional simulation
at speeds approaching (or even exceeding) real time [TJ07]. Recently, this mode
can be run together with cycle-accurate mode [BFT10].

• Fast cycle-approximate simulation: This mode enables fast prediction of cycle
counts based on information gathered during fast functional simulation and prior
training [Fra08].

To run the simulator, we will first need to compile our application using a suitable
compiler to generate an ELF executable file. Giving compiler arc-elf32-gcc and the
assembly file speed.s as an example:

arc-elf32-gcc -mA7 -o <output file> <input file>

Then, we can run ArcSim on the generated executable file by:

arcsim -v -c -e <ELF executable file>

Option [-v] tells the simulator to output performance statistics, option [-c] enables
cycle-accurate mode and option [-e] indicates that the target file is of ELF executable
type.

17

18 Chapter 3. Background

3.2 Cache Architecture

Cache plays a very important part in increasing the efficiency of memory access and
data transfer. It makes use of the locality of reference [Den05] exhibited in computers
to store frequently accessed data into an ultra-fast and compact memory component so
that future requests can be served fast. Hennessy and Patterson’s book [Pat11] helps
me to review the knowledge of cache and then write this section.

3.2.1 Cache Organization

Cache block or cache line are the basic unit of a cache, usually consists of multiple
bytes. Several blocks in a cache are grouped into a set.

Cache associativity means the number of blocks in a set, in other words, how many
blocks a byte in memory can possibly go to in the cache. For instance, a fully associa-
tive cache basically means that a particular memory byte can go into every block in the
cache; a 4-way set associative cache means a particular memory byte can potentially
go into a certain set of 4 blocks; and a direct mapped cache means this memory byte
can only replace one particular block in cache.

Each block in cache will have a valid bit and a dirty bit attached to it. The valid bit of
a cache block indicates whether or not this block has been loaded with valid data. In
the initial state of a cache (no data has been written into the cache), all valid bits are 0.
The dirty bit indicates whether this block has been modified since it was loaded from
memory. The dirty bit is used when the cache is using a write-back policy.

3.2.2 Cache Addressing

Figure 3.1 shows us how a memory address is structured to be matched to a cache.

Figure 3.1: Cache Addressing

When we have a memory access to a particular address, the processing unit will first
find which set this memory byte will possibly locate at based on the index part. Then
it compares the tag of the address to each tag of the cache blocks in that set. If the tag
of the address matches with one of the tags of cache blocks, that is a hit; otherwise, it
is considered to be a miss. As a cache block usually contains a wide range of bytes, we
need the offset part of the address to indicate where this particular memory byte lies in
that cache line.

3.3. Zynq-7000 All Programmable SoC 19

3.2.3 Replacement Policy

When there is a cache miss, and the blocks in the set where the data could go are all
filled with valid content, then the cache has to use some replacement policy to find a
victim block to be replaced by the new-coming data. There are lots of existed cache
replacement policies and some of them are very complicated and tricky. Different re-
placement algorithms will generate different efficiencies and the policy of a cache is
usually decided by specific requirements.

For the sake of this project, only the first-in-first-out policy is used. Its meaning is
rather self-explanatory: the cache evict the first filled-in block regardless of how often
or how recently it has been used.

3.2.4 Write Policy

When there is a write-hit, there are generally two ways to operate on cache:

Write-through Write is done both to the cache and to the memory

Write-back Write is done only to the cache. Write to the backing store is not imple-
mented until the cache block containing the written data is about to be replaced by new
content. In this case, we will need the dirty bit to tell the memory access instruction if
this content in the block is different from that in the corresponding memory location.

When there is a write-miss, one of the following operations is carried out:

Write Allocate The data at the memory location is loaded into the corresponding
cache block, followed by a write-hit operation.

No-write Allocate The data is written directly to the backing store.

Usually, a write-through cache will use no-write allocate policy and a write-back cache
will use a write allocate policy.

3.3 Zynq-7000 All Programmable SoC

As said before, this project is based on the Zybo Zynq-7000 ARM/FPGA SoC Trainer
Board. The embedded Linux, cache module, ArcSim simulator and the interconnects
among them are all implemented on the Zynq-7000 All Programmable SoC architecture
of the board. In this section, I will demonstrate the key features of the Zynq-7000
family which plays a vital role for this project.

20 Chapter 3. Background

3.3.1 Zynq-7000 Family Architecture

Figure 3.2 from [Sad14a] shows a brief overview of the Zynq-7000 family architecture.

Figure 3.2: Brief Overview of Zynq System

The Zynq system consists mainly of two parts – a processing system (PS) and a pro-
grammable logic (PL). The ARM Cortex-A9 CPUs are the heart of PS and are where
we will run the software side of ArcSim simulator to drive the cache module imple-
mented in PL. Each CPU has a level-1 cache and the coherency is guaranteed by the
Snoop control unit. The PS also has an on-chip memory (OCM), a level-2 cache, some
external memory interfaces, and a rich set of peripheral interfaces. The interconnect
device controls the communication among different units on the PS and also the com-
munication with PL through PS-PL interfaces.

The PL is basically the FPGA fabric, which is where the hardware accelerator (cache
model) is implemented on.

Each device in the Zynq system has its own address space and is not accessible by
components other than themselves unless interfaces are provided, such as the AXI
interfaces. Figure 3.3 from [Xil16b] illustrates the address space of different com-
ponents in the Zynq system. The two columns circled by a red rectangular are the
address spaces of the PL and are where the memory-mapped registers of the AXI slave
will locate in.

3.3. Zynq-7000 All Programmable SoC 21

Figure 3.3: System-Level Address Map

3.3.2 PS-PL Interfaces

Now, let us take a closer look specifically at the PS-PL AXI interfaces.

The four HP (high performance) ports (HP0, HP1, HP2, HP3) are the slave ports of the PS
and we can design custom peripherals in PL with AXI master ports connected to these
HP ports. It allows the AXI master peripherals to carry out read/write transactions to
access DRAM or OCM of PS.

The two MGP (master general purpose) ports are the most important ports for this
project and they are the only two master ports of PS. They provide the basis for the
implementation of AXI protocol (explained in section 3.4) and allow the programs
running on ARM Cortex-A9 cores to access the address space of PL through the AXI
interface. They provide the way for PS to control and use the hardware. Furthermore,
these two ports are the main means of the DMA controller on the PS to perform read
and write to the logic on PL [Sad14b].

The ACP (Accelerator Coherency Port) is very similar to the HP ports and allows

22 Chapter 3. Background

the AXI master blocks on PL to initiate read/write transactions to the PS. The main
difference between them is that the ACP allows the AXI master to first search caches
of the CPUs because the ACP is connected directly to the Snoop control unit. If data
exist in caches, then this transaction can be responded without looking into the DRAM
memory of PS, leading to a faster and more energy-efficient data transfer.

Finally, the SGP (slave general purpose) ports are another two slave ports of the PS
for master logic on PL to access different peripherals on PS.

3.3.3 Another Overview of This Project

After I learned about the Zynq system architecture, I can draw another skeleton of this
project with a better view of how the cache module is integrated with the Zynq system
and how AXI ports are connected. This is shown by figure 3.4.

Figure 3.4: Another Overview of This Project

3.4. AMBA AXI Protocol 23

3.4 AMBA AXI Protocol

The AMBA (Advanced Microcontroller Bus Architecture) AXI (Advanced eXtensible
Interface) protocol provides a way for the PS to communicate with PL. It defines chan-
nels and signals to guarantee the functionality of data transfer so that we can create
custom IP peripheral in the PL and then add control and status monitoring capabilities
by using memory-mapped registers which the processors (PS) can access via the AXI
interconnect.

For a complete explanation and specification of the AXI protocol, please refer to
[ARM04] and [Gri14]. In this section, I will selectively illustrate some main func-
tionalities and mechanisms of the AXI protocol which are critical for understanding
this project.

3.4.1 AXI Architecture

In this project, we are using an AXI4-Lite protocol which is a reduced form of the full
AXI4 specifications and has single-beat transactions only (does not support for bursts
or have transaction ID) [Sad15].

Five Channels

The functionality of AXI protocol is achieved mainly by five channels. Each of the
five independent channels consists of a set of information signals and uses a two-way
VALID and READY handshake mechanism, which is explained in section 3.4.2.

Figure 3.5 gives us a rough skeleton of the five channels with an arrowed line pointing
from data provider (source) to data receiver (destination).

Figure 3.5: Skeleton of Five AXI Channels

Here are the definitions of the five channels:

24 Chapter 3. Background

• Write Adrress Channel carries all the required addresses and control information
for a write transaction.

• Write Data Channel transfers the write data from master to slave.

• Write Response Channel provides a way for the slave to respond to write trans-
actions. It carries information indicating the status of the write transaction in-
cluding OKAY, EXOKAY, SLVERR and DECERR.

• Read Address Channel carries all the required addresses and control information
for a read transaction.

• Read Data Channel transfers both the read data and any read response informa-
tion from the slave back to the master.

Memory-mapped Registers

The AXI slave can have a user-defined number of memory-mapped registers which
allow PS to write to the address space of PL and can be accessed and used by PL logic
as control signals to achieve a particular function. They are the critical medium which
contains data shared by PS and PL for communication and are the most important
architecture in the project to guarantee the PS’s control over PL.

3.4.2 Two-way Handshake Mechanism

As mentioned above, each channel of the AXI protocol uses a two-way VALID/READY
handshake mechanism to transfer data.

To see the full set of defined signals of each channel for AXI4-Full protocol, please
refer to [ARM04]. To see the full set of signals of each channel for AXI4-Lite protocol,
please refer to [Gri14].

The source generates the VALID signal to indicate when the data or control information
is available. The destination generates the READY signal to indicate when it is ready
to accept the data or control information. The transfer can happen only when both the
VALID and the READY signal are high.

Figure 3.6, 3.7 and 3.8 from [ARM04] show three scenarios when a handshake process
happens with an arrow indicating the moment the transfer happens.

3.4. AMBA AXI Protocol 25

Figure 3.6: VALID Before READY Handshake

Figure 3.7: READY Before VALID Handshake

Figure 3.8: VALID With READY Handshake

It is worth noting that the source can generate the VALID signal even before the desti-
nation is ready to receive the data and vice versa. There is no specific requirement on

26 Chapter 3. Background

the order of VALID and READY assertions between source and destination.

It is a common misunderstanding on the handshake process that the sender must wait
for the receiver to assert READY before it can assert VALID. This “wait for READY before
asserting VALID” rule is ILLEGAL and will incur deadlock situation. READY can be
asserted before VALID, but the sender should never wait for the assertion of READY as a
premise to start the transaction [Gri14].

Chapter 4

System Setup

4.1 Boot Linux on ARM Cortex-A9 CPUs

This tutorial: http://www.dbrss.org/zybo/tutorial4.html was followed to boot
Linux on the Zybo board.

The reason of running the software part of the simulator on a embedded Linux is that
the bandwidth between PS and PL of Zynq system is much larger than that between
external computers and FPGA on board. Thus, we save time on the communication
between hardware and software.

4.2 SSH Across Different Networks

After I manage to run Linux on the Zybo board, to make it wirelessly accessible and
able to update software and download some useful packages, I enable its Ethernet port
for networking. As a result, I can also ssh (Secure Shell) into my user account on that
embedded Linux system under the same network. But the problem is that when I want
to use those Vivado or Xilinx SDK design tools on DICE machines, I cannot access my
board connected to the router at home. That is because the network of a DICE machine
is different from my home network. Thus, when I have a remote request sent to my
home IP address from outside the network, the router simply does not know where to
send my request [Tri16].

Figure 4.1 from [Tri16] illustrates this scenario. When we are using our laptop (225.213.
7.32) somewhere in the world and we want to access some files on our home laptop us-
ing ssh, we send this request to our public, or forward-facing IP address (127.34.73.214).
Nevertheless, our router (192.128.1.1) cannot do anything because it does not know
which device or port to forward this request to.

27

http://www.dbrss.org/zybo/tutorial4.html

28 Chapter 4. System Setup

Figure 4.1: Remotely SSH to Another Network

As a result, we will need a port forwarding rule to tell our home network that when
we access it using this program, it should send this request to this device at this port.
Before doing so, we also need to assign a static IP address to our Zybo board because
the address assigned to it might change when there is new device joining our home
network [Tri11].

Then, we can configure our router by going to the router IP address in our web browser
and add a port forwarding rule which specifies the IP address of our Zybo board and
the port number 22 (the port number of ssh).

Finally, we can ssh to our board wherever we are by simply tapping the following
command in terminal:

ssh -X -l user name home ip address

It is worth noting that it would be better if we set a dynamic DNS service to link our
home IP address to a memorable address name like mysuperawesome.home.address
so that we do not need to check our numeric home network IP address every time
before we ssh into our board because our home IP address can also change sometimes
(although it might remain the same for several months or years) [Tri16].

4.3 Mount Filesystem

After enabling ssh to my home network from DICE machines, now I can edit files on
my board using various tools on DICE by mounting the embedded Linux file system
to the DICE machine, just by the following command:

4.3. Mount Filesystem 29

sshfs <user name>@<home ip address>:/ <mount point path>

[/] means mounting from the root directory of the embedded Linux and mount point
path is where on DICE I want to mount the directory.

After I finish editing files in my board or transferring files to my board, I can use
the following command to unmount the file system from the DICE:

fusermount -uz <mount point path>

Command fusermount provides a secure method for non privileged users to mount
and unmount their filesystems. Option [-u] represents unmount and option [-z] repre-
sents lazy unmount.

Chapter 5

Implementation

5.1 Cache in Verilog

To implement a cache in Verilog and then make it run on FPGA is not a complicated
task requiring hundreds of lines of code, but it is tricky in the aspect that we need to
convert our way of thinking in software to hardware. In hardware design, we do not
have some handy data structures such as class, struct, list in software program-
ming; neither can we write some tedious code in a concise form by using for, while,
if, else wherever we want, but what we have is a series of 0s and 1s and what we
need to do is connecting and modularizing them and using flip-flops when we need to
store some values.

5.1.1 Cache Design

A relatively simple cache architecture is used to make everything run before modifica-
tion. The following parameters are those of a typical and simple cache with an FIFO
replacement policy which I simulate in hardware:

• Cache size: 32KB

• Cache line/block size: 64B

• Cache associativity: 4-way

• Cache replacement policy: First-In-First-Out

• Cache writing policy: Write-through and no-write allocate

• Number of blocks: 512

• Number of sets: 128

Also for the sake of simplicity, I use the most easy-to-implement write policy pair
write-through and no-write allocate. I assume the following time costs for this model:

• Read hit: 1 cycle

31

32 Chapter 5. Implementation

• Read miss: 2 cycles

• Write hit: 3 cycles

• Write miss: 4 cycles

Because we are simulating Encore processor targeting an ARCompact Instruction-set
Architecture, we have a 32-bit memory address, and then we can compute the sizes of
different parts of this 32-bit address:

• Memory address size: 32 bits

• Tag size: 19 bits

• index size: 7 bits

• Offset size: 6 bits

Figure 5.1 shows us the overview of the cache module design in Verilog.

Figure 5.1: Cache Module Overview

Below is the definition of each input and output:

• addr[31:0]: The 32-bit memory address where the instruction want to access.

• request: Single-bit signal indicating that there is a valid memory access request
and the cache module should start working to compute the latency.

• read: Single-bit signal indicating the type of this memory access instruction. 1
means a memory read instruction and 0 means a memory write instruction.

• clk and rst: Every operation of this module is synchronized with the input
clock clk, including the synchronous reset rst.

• cycle[7:0]: This 7-bit output signal implies how many cycles it takes for this
memory access instruction to finish. According to the previous time cost set-
tings, the first three bits of this output are enough to give latency information.

• done: This single-bit signal is very important and is set to 1 only for 1 cycle after
the cache module starts working. It indicates when the AXI slave should read
the output data from cache module to corresponding memory-mapped registers.

5.1. Cache in Verilog 33

• hit: Single-bit signal telling whether this memory access hits in cache or not.

Figures 5.2 to 5.5 show the waveforms of how this cache module works under read
miss, read hit, write miss and write hit, for a random address 0x84fa7cc1.

As the request signal is driven by the software running on the embedded Linux
through the AXI interface, there should be two points that we should bear in mind
when we are designing the hardware cache module (these rules hold true for other
software-driven signals addr and read as well):

• Each value of request (either 1 or 0) will last for a very long period as software
is much slower than hardware. Plus we know in section 6.2 that the write trans-
action from processing system to programmable logic takes over 150 cycles, so
the value of request will remain the same for at least that amount of time.

• As the write to request is though the memory-mapped registers in AXI slave,
the change of its value is synchronized with the clock. That is why in our wave-
forms, every modification on request takes place on the positive edge of clk.

Figure 5.2: Waveform for Cache Read Miss

34 Chapter 5. Implementation

Figure 5.3: Waveform for Cache Read Hit

Figure 5.4: Waveform for Cache Write Miss

5.1. Cache in Verilog 35

Figure 5.5: Waveform for Cache Write Hit

Only the mechanism for the cache read miss scenario is explained in this section as the
other three are similar.

The software driver (simulator) running on Linux will set the values of request, addr
and read at any time and the changes of them are synchronized with positive clk edge
in the AXI slave. The cache module starts working and will output the results (hit and
cycle) in the next cycle. The status of cache will be changed in the same cycle and
in the following clock cycle, since the request signal is still high, the cache module
will run again and because the missed block has already been available in cache at this
moment, output hit will be 1 and cycle will be 1 (read hit). That is why we need the
done signal to tell the AXI slave when to read the output data from cache module to
corresponding registers. The data to read should be the results in the first cycle after
request is asserted. Thus, the done signal is 1 only for the first cycle after request
is asserted. In our AXI peripheral, the results are read only when done is high.

Then, the outputs will remain the same. The final stable result of a particular memory
request will always be a read hit or write hit (hit = 1 and cycle = 1 or 3).

At the positive edge when request is set to 0 (4 cycles indicated in the waveforms are
just a representation. The real time span during which request remains high will be
much longer), the output will all be set to 0. As the done is also 0, these results will
not be read to memory-mapped registers so the software driver will not be able to see
these zeros.

5.1.2 Cache Implementation

To see the complete code for this cache module in verilog, please turn to appendix A.

36 Chapter 5. Implementation

reg [18:0] tags [511:0] is an array of tags of each block in the cache (there are
512 cache lines and each cache line has a 19-bit tag). validBits[511:0] is an array
of the valid bits of those 512 blocks in the cache. Given a particular index, we can
easily get the valid bits (v0, v1, v2, v3) and tags (t0, t1, t2, t3) of the four
blocks in that set by:

v0 = validBits[index * 4 + 0]; t0 = tags[index * 4 + 0]
v1 = validBits[index * 4 + 1]; t1 = tags[index * 4 + 1]
v2 = validBits[index * 4 + 2]; t2 = tags[index * 4 + 2]
v3 = validBits[index * 4 + 3]; t3 = tags[index * 4 + 3]

It is worth noting that at first I did not use two-dimensional arrays in Verilog (for
example, I defined tags simply as reg [9727:0] tags), and after one and half hours’
synthesis, it turns out that even though this way of definition passes simulation, it
overuses the LUTs on FPGA. Hence, it is in fact not feasible.

Then, we can use these valid bits and tags to judge whether this memory access is a
hit or not and give the result in the output signal hit. Based on read and hit, we can
compute the latency cycle of this memory access. We also need to update the cache
status based on the replacement policy if there is a miss.

Since request is high for a long period, the cache operations are run at every clock
positive edge. We need to use signal done to make sure that only results in the next
cycle after assertion of request are read to memory-mapped registers by the AXI
slave. To achieve this, we need another variable integer loop. loop is set to 1 in
the next cycle after the assertion of request and is increased by one in each of the
following cycles until request is set back to 0 when loop is also set to 0.

Figure 5.6: Wave Graph of Cache Design Simulation in Verilog

Figure 5.6 shows the wave graph of the cache module simulation. The four memory
accesses are a read miss, a read hit, a write miss and a write hit. When done is 1, the
corresponding values of cycle are 2, 1, 4 and 3 respectively. The complete test bench
code to generate this simulation wave graph is in appendix B.

5.2. Create Custom AXI Slave Peripheral 37

5.2 Create Custom AXI Slave Peripheral

I created an custom AXI IP block in Vivado with the following code of user logic.
I commented out the default Verilog code for writing to slv reg1 so that this regis-
ter can be assigned the result (cycle) from the cache module. The software driver
can drive the hardware by writing to slv reg0 (request), slv reg2 (address) and
slv reg3 (instruction type).

In the always block, slv reg1 is written based on done so that it gets the correct
result.

1 wire h i t ;
2 wire [7 : 0] c y c l e ;
3 wire done ;
4 wire r s t ;
5

6 cache cache (
7 . add r (s l v r e g 2) ,
8 . r e a d (s l v r e g 3) ,
9 . r e q u e s t (s l v r e g 0) ,

10 . h i t (h i t) ,
11 . c y c l e (c y c l e) ,
12 . done (done) ,
13 . c l k (S AXI ACLK) ,
14 . r s t (˜ S AXI ARESETN)
15) ;
16

17 a lways @(posedge S AXI ACLK)
18 b e g i n
19 s l v r e g 1 <= s l v r e g 1 ;
20 i f (S AXI ARESETN == 1 ’ b0) b e g i n
21 s l v r e g 1 <= 0 ;
22 end
23 e l s e b e g i n
24 i f (done == 1 ’ b1)
25 s l v r e g 1 <= c y c l e ;
26 end
27 end

AXI User Logic

5.3 Call Hardware Cache Model From Software Driver

After finishing the design of the whole hardware system (including our AXI slave
peripheral and hardware cache module), we need to generate a bitstream file for this
hardware design and them export it to FPGA from the embedded Linux. The following
command can help us achieve that:

dd if=<bitstream file> of=/dev/xdevcfg

After this, the logic is written to FPGA on the board so that we can use the hardware
in the software driver running on PS.

38 Chapter 5. Implementation

Remember that if we do not reset the board (normally by pushing the physical reset
button or rebooting the Linux), the data written on the address space of PL is not
automatically cleared after the completion of a program. The hardware cache status
we get after simulating a set of memory accesses will remain unchanged for the next
program. Thus, we might get two different results for the same set of memory accesses.
To start a new test with an empty cache, we can run the above command again because
it can reload the bitstram file and refresh the PL so all the old data in the cache is
cleared.

To call the hardware cache module through AXI interface we will first need to get
the base address of the memory-mapped registers from the Address Editor in Vivado.
Then we need a function to get a virtual address for this physical base address so that
we can write and read this address space by creating a pointer to it in our software
driver. A function to achieve this following examples in [Fle14] and an example of
calling hardware cache module in the software driver can be found in appendix C.

Chapter 6

Test and Evaluation

6.1 Time Types for Benchmarking Program

Before we start our tests on the time cost of difference implementations and architec-
tures, we need to first clarify the following three time types [SGGS98] used for timing
a program.

• Real (wall) time is the actual elapsed real-world time including time slices used
by other processes and the time the process is blocked, such as waiting for I/O.

• User CPU time is the amount of CPU time spent in user mode (outside the
kernel) to execute the process. It is the actual CPU executing time outside the
kernel for this process only. The time spent by other processes or by the process
being blocked is excluded.

• System CPU time is the amount of CPU time spent in kernel mode (inside the
kernel) to execute the process. It is the actual CPU executing time inside the
kernel for this process only. Similar as user CPU time, other processes and time
the process spends blocked do not count towards this figure.

These three parameters also correspond to the three outputs (real, user, sys) of the
terminal command time in Linux. It is quite obvious that we need to use the total
CPU time spent by a process (system CPU time + user CPU time) for benchmarking
different architectures and implementations in this project.

6.2 Evaluation of AXI Interface Time Cost

[CSS+06] has already stated the importance of taking care of the interface, “FAST per-
formance hinges on the interface between the functional model and the timing model.
Care must be taken to maximize the performance of the communication protocol, its
implementation and the physical link.”

39

40 Chapter 6. Test and Evaluation

It is obvious that the reason for offloading the cache simulation to FPGA is because the
whole implementation (check cache hit or not, update cache, output cycle count) just
takes several clock cycles; however, the primary drawback of this method is that we
introduce new delay from transferring signals in AXI interfaces. It is quite possible that
this newly-joined delay could compensate what we have achieved by taking advantage
of the high speed of hardware.

The AXI protocol, as introduced in section 3.4, is not a simple protocol and has a bunch
of signals to guarantee its functionality, so its influence on simulation speed could not
be ignored. The real aim of this project is, to some extent, to figure out the trade-off
between how much functionality of the simulator should be offloaded to hardware
and how much new delay would be introduced by the AXI interfaces for building
this hybrid architecture.

As a result, I find it quite important to spend some time on the test of just the AXI
interface before the test of our new hybrid simulation system, so that we can gain a
better understanding of the results from much more complicated situations.

6.2.1 Method

The analysis method would be similar for a single read transaction between PS and
PL, so I will just explain the evaluation of time spent for a single write transaction.

From [Xil16a] we know that under the board type and configuration (illustrated in
table 6.1, represented by xc7z010clg400-3 in Vivado Design Suite) used for this
project, the maximum frequency of the processing system is 866 MHz. So 1 clock
cycle is 1/(866× 106) = 1.15 ≈ 1ns. I will just make a reasonable approximation in
this dissertation that one clock cycle is 1ns.

Option Value
Family Zynq-7000

Sub-family Zynq-7000
Device Name Z-7010
Part Number XC7Z010

Package clg400
Speed Grade -3

Table 6.1: Board Type and Configuration for This Project

Now, I create an empty AXI-Lite slave peripheral which has no user logic. The only
thing it does is enabling the PS (processing system) to write a value to or read a value
from the PL (programmable logic) through the memory-mapped registers provided by
the slave.

The following three pieces of code are executed on the embedded Linux to get the time
cost for a single write (the code to time the execution of the loop is only presented in
the first test, but is obviously needed in all tests):

6.2. Evaluation of AXI Interface Time Cost 41

1 c l o c k t b e g i n = c l o c k () ;
2 f o r (k = 0 ; k < 1 0 ; k ++) {
3 f o r (j = 0 ; j <1000; j ++) {
4 f o r (i = 0 ; i < 1000 ; i ++) {
5 / / Do n o t h i n g
6 }
7 }
8 }
9 c l o c k t end = c l o c k () ;

10 do ub l e t i m e s p e n t = (d ou b l e) (end − b e g i n) / CLOCKS PER SEC ;

Write Test 1

1 f o r (k = 0 ; k < 1 0 ; k ++) {
2 f o r (j = 0 ; j <1000; j ++) {
3 f o r (i = 0 ; i < 1000 ; i ++) {
4 / / Wr i t e v a l u e i t o a normal v a r i a b l e
5 v a r = i ;
6 }
7 }
8 }

Write Test 2

1 f o r (k = 0 ; k < 1 0 ; k ++) {
2 f o r (j = 0 ; j <1000; j ++) {
3 f o r (i = 0 ; i < 1000 ; i ++) {
4 / / Wr i t e v a l u e i t o s l v r e g 0 i n PL
5 ∗a = i ;
6 }
7 }
8 }

Write Test 3

1 f o r (k = 0 ; k < 1 0 ; k ++) {
2 f o r (j = 0 ; j <1000; j ++) {
3 f o r (i = 0 ; i < 1000 ; i ++) {
4 / / Wr i t e v a l u e i t o a normal v a r i a b l e b u t t h r o u g h a p o i n t e r
5 ∗ p t r = i ;
6 }
7 }
8 }

Write Test 4

Test 1 does not do anything in each iteration and is just for reference. var in test 2 is an
integer previously defined. Variable a in test 1 is a pointer to where register slv reg0
in AXI slave locates at. Details on how we get a virtual address from the physical
address automatically provided by the Vivado Address Editor can be found in section
5.3. ptr in test 4 is a pointer to a normal integer variable.

In fact, I disabled the PS’s ability to write to slv reg1 and do slv reg1 <= slv reg0
on each positive clock edge, so that I can print out the value of slv reg1 in my program
to check that the number is written to slv reg0 correctly. This will not affect our test

42 Chapter 6. Test and Evaluation

results of the time cost for interfacing between PS and PL and is just for the purpose
of validation.

6.2.2 Results

Table 6.2 shows the timing results for three tests (each result is the average value of
running the same piece of code for 10 times).

Test CPU Execution Time
1 0.124s
2 0.154s
3 2.003s
4 0.139s

Table 6.2: Timing Results for Write Tests

For each test except the first one, the write operation is implemented for 107 times.

From test 2 we know that a write to a variable in software takes:

(0.154−0.124)÷107 = 3ns

From test 3 we know that a single write to the register in programmable logic has a
time cost of:

(2.003−0.124)÷107 = 188ns

From test 4, we know that a write to an integer variable in software through a pointer
takes:

(0.139−0.124)÷107 = 1.5ns

As mentioned before, the clock cycle for the Zynq system is 1ns. Hence, we have:

Type of write Number of clock cycles
Write in software 3

Write in software through pointer 1.5
Write to hardware through AXI 188

Table 6.3: Number of Cycles for Different Write Types

I understand that in each test, the operation also includes a read from integer variable
i in software, but since this is made the same for all 3 tests (with an operation in each
loop), the results shown in table 6.3 can still reflect the information we need.

6.3. Software Cache Simulation vs. Hybrid Cache Simulation 43

6.2.3 Discussion

It is clear that because the system needs to go through the handshake protocol for each
signal channel it uses if PS wants to communicate with PL, it takes much longer time to
carry out a single write transaction between PS and PL. The signal transfers between
PS and PL (VALID, READY, etc.) for guaranteeing the functionality of AXI protocol
significantly slow down the program: more than 60 times slower than a single write
in software and more than 120 times slower than a single write in software through
pointer. The result that write through a pointer is significantly faster than write directly
to the variable in software is an interesting phenomenon but is beyond the discussion
of this project.

However, one key point here is that we does not have any user logic in our AXI pe-
ripheral for these test programs. If we offload more computation to hardware, the
advantage of hardware will start showing up. Even though going though AXI interface
will take much more time than a single write in software, we might just need to write
to the hardware once at the start and leave all the calculation to be implemented on
hardware, which will excitingly only need several extra clock cycles, and at the end
of calculation, carry out another high-cost read to receive data from hardware. This
is exactly the case of our cache simulation in hardware. Writing the address and in-
struction type information to hardware might take a long time, but all the remaining
computation can be done in several cycles in hardware. What we need to do is simply
read back the data through AXI interface after the computation finishes.

In comparison, as our program becomes more and more complicated, we will have
more and more reads and writes in software, and unlike the case of hardware, the
number of cycles for each operation will add up. 3 (or 1.5) might not be a large
number on its own, but when added up in a rather big program, it will very likely
surpass the time it takes to do several reads and writes through AXI interface. There
must be a certain point where the total number of cycles for operations in software
will compensate the number of cycles spent in the AXI interface plus the several extra
cycles for computation in hardware. That will be the moment where hybrid simulation
will have a higher speed as a whole.

6.3 Software Cache Simulation vs. Hybrid Cache Sim-
ulation

This section will focus on whether the number of cycles saved by hardware computa-
tion of the simple cache designed in 5.1 will compensate the number of cycles wasted
in the AXI interface.

The code for this section is in Appendix C.

I write another cache model in C which runs purely in software on the A9 core and has
the same architectures, parameters and specifications as the hardware cache module I
implement in 5.1. I will compare the speeds of calculating the number of cycles of a

44 Chapter 6. Test and Evaluation

single memory access instruction by two cache models to see if using our hardware
cache module through AXI interface will result in an improvement on speed.

6.3.1 Validation

To validate my software and hardware cache simulation, the program generates 1×106

(#define NUM REQUESTS 1000000) memory access requests with random addresses
and random instruction types (read or write). This set of memory access requests is
run both on the software cache module and on the hardware cache module through the
AXI interface.

Table 6.4 shows us the results when the set of random memory accesses are tested on
both software cache model and hardware cache model.

No. Test Read Hit Read Miss Write Hit Write Miss
1 8 500618 4 499370
2 6 500031 6 499957
3 10 500100 9 499881
4 7 500106 10 499877
5 5 500051 5 499939
6 9 499988 15 499988

Table 6.4: Simulation Results for a Set of Random Memory Accesses

The software cache model and hardware cache model are getting exactly the same re-
sults for all the tests so we can reasonably say that both models are doing their job
correctly. It is worth noting that the number of hit memory accesses is significantly
smaller than missed instructions. This is reasonable as the requests we generated are
completely random so there is no principle of locality applied on them [Den05]. Plus
that the cache model are fairly simple with an FIFO replacement policy, the perfor-
mance is expected to be extremely bad. The set of memory requests without any local-
ity is not what happens in real world but it should not affect the comparison of speeds
between two models.

6.3.2 Results

If we turn off validation (program does not print out statistics so no need to do extra
work in the for loop). We can get the timing results for simulating the whole set of
random memory accesses using different models. Each value is obtained as the average
of 20 tests.

6.3. Software Cache Simulation vs. Hybrid Cache Simulation 45

Model CPU Execution Time
Software Cache Model 0.3451s
Hardware Cache Model 0.8274s

Table 6.5: Timing Results for Simulating the Whole set

Divide the values in table 6.5 by 106, we can get the timing results for simulating
a single memory access using two models. The same assumption made in preivious
section is still hold here that 1cycle≈ 1ns.

Model CPU Execution Time (in ns) CPU Execution Time (in cycles)
Software Cache Model 345ns 345 cycles
Hardware Cache Model 827ns 827 cycles

Table 6.6: Timing Results for Simulating a Single Memory Access

The results are consistent with the results we get in 6.2. We can see from the code that
it has 4 writes to the address space of PL in a single for loop for cache simulation in
hardware. We know from 6.2 that a single write will take 188ns so one iteration will
take at least 4× 188 = 752ns. Plus that in one iteration, we also need to read from
arrays and variables in software, the value 827ns indeed makes sense as the time cost
for a single memory access simulation.

From the results we can see that calling the hardware cache module through AXI in-
terface is slower than implementing the computation directly on software. It suggests
that under the specifications of our simple cache module in hardware, the delay on
AXI interface is not compensated by the high-speed of computation in hardware.

6.3.3 Discussion

This result might seem disappointed at first glance but it in fact indicates great possi-
bilities if we compare it with previous results from experiments on AXI interface in
6.2.

Type of operation Percent of slow-down
Write to a register in hardware 6167%
Cache simulation in hardware 140%

Pslowdown = (thardware− tso f tware)÷ tso f tware×100%

Table 6.7: Percent of Slow-down for Different Operations

From table 6.7 we can see that even though our hardware cache model still shows a
slow-down compared to its counterpart in software, this slow-down is much more slight
than that of a single write to a register in hardware. Actually, such a large amount of

46 Chapter 6. Test and Evaluation

relief on slow-down with such a small amount of computation offloaded to hardware
is quite exciting.

As the cache module designed in this project is a fairly simple one and we get such
a reduction on slow-down, we can reasonably say that there must be a point when
time spent in AXI interface can be offset by the amount of time saved by hardware
computation on FPGA and that point should be very close from what we have now.
Off course, to get such a speed-up, we will need to keep the number of accesses to the
address space of PL down but offload more computation to PL.

From this trend, it seems very likely to get a speed-up if our cache is designed to be a
slightly more complicated one with for example, a write-back and write allocate policy
and a least recently used replacement policy, because in that case we will have more
hardware computation while communication between PS and PL will remain the same
as the simple cache module in this project. The CPU execution time of the complicated
hardware cache model should be the same as the simple one, but the execution time
of the software cache model will increase much more significantly if we add more
functionality to it.

6.4 Prediction on Potential Speed-up for ArcSim

As the cache module designed in this project does not achieve a speed-up on its own
compared to software implementation executing the same logic, there is no point in-
tegrating this module with the ArcSim simulator to substitute corresponding cache
simulation because we are bound to get a slow-down as well.

In this section, however, assume we have a hardware cache module with sufficient
computation offloaded to hardware as depicted by previous section and we do get a
speed-up of α on its own, we are trying to figure out to what extent the speed of the
simulator as a whole can be improved.

6.4.1 Implementation

If we look into MemoryModel.h of the ArcSim simulator, we can find that the mem-
ory model of this simulator consists of two CacheModels (data and instructions), two
CCMModels (data and instructions) and one MainMemoryModel.

For the sake of figuring out how much slow-down the modelling of cache contributes
to the overall slow-down of cycle-accurate simulation, we need to comment out the
operations for checking cache hit or miss and calculating latency and cycles. To do
so, I comment out the operations in functions is dc hit() and is dirty dc hit()
and just make them return false. I also comment out operations in function fetch(),
read() and write() so that they only return a cycle of value 0. All these functions I
mentioned are in the MemoryModel.h file of the ArcSim simulator source code.

6.4. Prediction on Potential Speed-up for ArcSim 47

6.4.2 Results

Recompile this simulator on DICE machine and test on the same executable file called
speed as we used in section 1.2. We can get the results shown in figure 6.1.

Figure 6.1: Cycle-accurate Simulation Without Cache

If we compare the simulation time with that of figure 1.3, we can see there is a speed-up
(there is an improvement on simulation rate as well) after we disable cache modelling.
By running each simulator for ten times and computing the average value of simulation
time, we get the results in table 6.8

Type of simulation Simulation time
Cycle-accurate simulation with cache modelling 48s

Cycle-accurate simulation without cache modelling 41s

Table 6.8: Simulation Time for Different Simulation Types

6.4.3 Discussion

We can see from the table that (48− 41)÷ 48× 100% = 16% of the cycle-accurate
simulation time might be the subject of speed-up as the result of a hybrid HW/SW

48 Chapter 6. Test and Evaluation

simulation. If we have a speed-up of α for the cache model, according to Amdahl’s
Law [Amd67], the speed-up of the whole system would theoretically be:

S =
1

1−0.16+ 0.16
α

=
α

0.84α+0.16

When speed-up α goes to infinity, the maximum overall speed-up in theory would be:

Smax = lim
α→∞

α

0.84α+0.16
= 1.2

Figure 6.2 plots the relationship between the speed-up of the simulator as a whole and
the speed-up of the cache model.

2 4 6 8 10 12 14 16 18 20
1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

1.18

1.2

Cache model speed-up α

O
ve

ra
ll

sp
ee

d-
up

S

α/(0.84α+0.16)

Figure 6.2: Plot of Overall Speed-up Along Cache Model Speed-up

The discussion in this section gives us a great guide for future designers in the design
process. As stated by [Kri01], the fraction of task that does not use the improved
feature limits the performance and speed-up. Designers should know the performance
limits due to other slow parts of this program and try to improve the most frequently
used components.

6.4. Prediction on Potential Speed-up for ArcSim 49

According to the evaluation in this section, I would say that choosing the cache model
to be the first part of this simulator to be offloaded to hardware is a wise idea. If we
recall the comparison between a functional simulation and cycle-accurate simulation
in section 1.2, we see that the latter spends twice as much time as the former, and
among those extra 23 seconds, cache makes up 7÷ 23× 100% = 30%, almost 1/3.
Even though the unaffected part of this simulator is still the major part, if we are
aiming specifically at relieving the slow-down of cycle-accurate model (the 23-second
slow-down), offloading cache simulation to hardware would be undoubtedly a good
idea.

Also, we can see from the structures of the ArcSim simulator, cache model is highly
independent from the whole memory model and is easily structured and modularized,
which is another advantage of implementing this part in hardware.

My suggestion for future designers would be to aim at a speed-up of cache model at
value 4∼ 8. In that range, the speed-up of the whole simulator starts to increase slower
and stabilize. It should be the most efficient range as it helps the whole simulator
to achieve a high performance while consuming relatively small amount of hardware
resource (less computation offloaded to hardware).

In comparison to previous work [SBV91, HHKC12, CCL05, AB86, SP05, PWKR02,
VPNH10, DO04], I would not say the potential improvement of performance is im-
pressive, but it is worth trying as a speed-up of 4 ∼ 8 on cache model should not be
hard to realize according to our previous evaluation on the relief of slow-down with
the amount of computation offloaded to hardware. In addition, it provides the basic
structure for designers to offload more parts of ArcSim to FPGA.

Chapter 7

Conclusion

.

7.1 Summary

With the goal to develop a hybrid hardware/software simulator (cache model on hard-
ware) to see to what extent the simulation can be speeded up, I start with the imple-
mentation of a simple cache model on FPGA. I compare the performance of a hybrid
simulation calling this hardware cache model with a pure software simulation imple-
menting the same cache architecture in software. I find that there is a slow-down for
the hybrid simulation but by evaluating the AXI interface time cost and the perfor-
mance of my two cache simulations, I figure out that this slow-down is as a result of
the simplicity of the cache.

Finally, after analysing the cache model of ArcSim, I am confident to say that with this
amount and complexity of computation, there must be a speed-up if we substitute this
cache implementation with a hardware model. In addition, by using Amdahl’s law, I
figure out that the maximum speed-up of this simulator with a hardware cache model
would be about 1.2 and the most efficient speed-up of the cache model which future
designers should aim at is 4∼ 8.

7.2 Critical Analysis

In this section, I will analyse the difficulties handled in this project and which part of
this project can be improved as future work.

51

52 Chapter 7. Conclusion

7.2.1 Difficulties Handled

System Setup

This project requires a mixed use of computer and the Zybo board, so the system setup
is a critical foundation for completing the following parts of this project. This partic-
ularly requires a convenient access to the board and an efficient file transfer between
computer and the board. This difficulty is tackled by SSH across different networks
and mounting remote file systems on a DICE machine, so it becomes much easier to
make use of software tools on DICE machines to develop programs and systems on
Zybo board.

Programming in Verilog

I was not confident in using low-level RTL languages like Verilog for FPGA program-
ming before I start this project. I spend a long time in learning the syntax and grammar
of hardware description language and converting my way of thinking from software to
hardware. [Tal14] helps me significantly in learning Verilog.

Resource Management of FPGA

I use some very large arrays of registers in my cache design and it turns out to be
the reason that this design takes one and half hour to synthesize, even though it gets
the correct results for the test bench. Following the suggestion of my supervisor, I
substitute those large size one-dimensional arrays with two-dimensional ones and then
the usage of LUTs drops to within the normal range.

Debugging of a Hybrid System

Every time I intend to test my hybrid system I have to go through a bunch of steps
to see the result. Among those steps are some fairly time-consuming ones such as
synthesis. This issue is mitigated by dividing the whole system into smaller function
units. Only when the previous units on which the following units are based are tested
and guaranteed to work properly, can I continue to implement and test the following
parts. If we write the code for the whole system and then test it all together, it is very
likely to get errors and is difficult to locate those bugs.

7.2.2 Possible Improvement

Add More Features to Cache Design

I do not implement the cache model of ArcSim completely in hardware due to time
constraints. Instead, I develop a simple cache model and do my evaluation based on

7.2. Critical Analysis 53

this model and the interface. Further work can be done in adding more features to the
cache model according to that of ArcSim and then integrate it with the ArcSim to see
the real speed-up.

Parametrize Cache Module

The cache module should be parametrized if time allows. In this way, we can not only
carry out wider range of tests but also gain more speed-up as parametrizing in software
will have higher time cost.

Generate Random Addresses

When I am generating random memory accesses in section 6.3 (code presented in ap-
pendix C), the random address generated by rand() has a range of 0∼ 2147483647(231

−1). Thus, the most significant bit of the random address is always 0. Other measures
should be taken if we want a set of random addresses covering every possibility of a
32-bit integer (−2147483647∼ 2147483647), but this should have no influence on the
speed comparison between two cache simulations.

Drive Request Signal in AXI Slave

Currently the request signal is driven by the software simulator. The simulator call
cache module by writing 1 to the register where request points to. This works as
we know software is much slower than hardware so the time between two statements
in software is long enough for the hardware to finish its job. We do not even need a
feedback from hardware to inform the simulator that the computation is done.

A drawback of this method is we need to initiate a write transaction from PS to PL
specially for request signal. Another way to do this is to drive this signal in the AXI
slave peripheral. Whenever the AXI slave sees a write to address or read, it asserts
the request. After AXI sees the done signal from cache module, it can set request
to 0. In this way, we reduce time spent in the AXI interface by omitting one write
transaction but use more hardware resource.

Programming Language Inconsistency

I test the interface and compare the speeds of software simulation and hybrid simula-
tion using C language; however, the ArcSim is written in C++. It is better to keep the
programming language consistent to save troubles when we integrate the cache module
with ArcSim. This is not a big deal because of the similarity between two languages.

54 Chapter 7. Conclusion

Compile ArcSim on ARM

The ArcSim we evaluate is the one compiled on DICE. However, at the end, the soft-
ware part of the simulator should run on ARM core. It is better to compile ArcSim on
ARM and then carry out evaluation, even though the proportion of cache model usage
should not be affected by where we run the simulator.

Appendix A

Verilog Code for Cache Module

1 ‘ t i m e s c a l e 1 ns / 1 ps
2

3 / / c ache s i z e : 32KB
4 / / c ache l i n e s i z e : 64B
5 / / c ache a s s o c i a t i v i t y : 4−way
6 / / c ache r e p l a c e m e n t p o l i c y : FIFO
7 / / c ache w r i t e p o l i c y : w r i t e−t h r o u g h and no−w r i t e a l l o c a t e
8

9 / / memory a d d r e s s s i z e : 32 b i t s
10 / / c ache t a g s i z e : 19 b i t s : numBlocks : 512
11 / / c ache i n d e x s i z e : 7 b i t s : numSets : 128
12 / / c ache o f f s e t s i z e : 6 b i t s
13

14 / / p e n a l t y
15 / / r e a d h i t : 1 c y c l e
16 / / r e a d miss : 2 c y c l e s
17 / / w r i t e h i t : 3 c y c l e s
18 / / w r i t e miss : 4 c y c l e s
19

20 module cache (
21 addr ,
22 read ,
23 r e q u e s t ,
24

25 h i t ,
26 c y c l e ,
27 done ,
28

29 c lk ,
30 r s t
31) ;
32

33 i n p u t w i r e [3 1 : 0] add r ;
34 / / i f r e a d e q u a l s 1 , t h i s i s a l o a d i n s t r u c t i o n ;
35 / / o t h e r w i s e , t h i s i s a s t o r e i n s t r u c t i o n
36 i n p u t w i r e r e a d ;
37 / / i n d i c t e s whe the r t h e r e i s a v a l i d memory a c c e s s
38 i n p u t w i r e r e q u e s t ;
39

55

56 Appendix A. Verilog Code for Cache Module

40 / / i n d i c a t e s whe the r t h i s a c c e s s h i t s o r n o t
41 o u t p u t r e g h i t ;
42 / / i n d i c a t e s how many c y c l e s t h i s memory a c c e s s w i l l t a k e
43 o u t p u t r e g [7 : 0] c y c l e ;
44 / / i n d i c a t e s t h a t i t i s t h e r i g h t t ime t o r e a d r e s u l t s
45 o u t p u t r e g done ;
46

47 i n p u t c l k ;
48 i n p u t r s t ;
49

50 / / a r r a y o f t h e v a l i d b i t o f each b l o c k
51 r e g [5 1 1 : 0] v a l i d B i t s ;
52 / / r e c o r d s t h e f i r s t coming−i n b l o c k i n each s e t .
53 / / two b i t s a r e enough f o r each s e t
54 r e g [1 : 0] f i r s t I n B l o c k [1 2 7 : 0] ;
55 / / a r r a y o f t h e t a g o f each b l o c k
56 r e g [1 8 : 0] t a g s [5 1 1 : 0] ;
57

58 r e g [5 1 1 : 0] n e x t v a l i d B i t s ;
59 r e g [1 : 0] n e x t f i r s t I n B l o c k [1 2 7 : 0] ;
60 r e g [1 8 : 0] n e x t t a g s [5 1 1 : 0] ;
61

62 r e g v0 , v1 , v2 , v3 ;
63 r e g [1 8 : 0] t0 , t1 , t2 , t 3 ;
64

65

66 r e g [7 : 0] i n d e x ;
67 r e g [1 8 : 0] t a g ;
68

69 r e g h i t 0 , h i t 1 , h i t 2 , h i t 3 ;
70

71 r e g [3 : 0] s e t V a l i d B i t s ;
72

73 i n t e g e r i ;
74 i n t e g e r j ;
75 i n t e g e r y ;
76 / / t o s e t ” done ” j u s t f o r one c l o c k c y c l e
77 i n t e g e r loop ;
78

79 / / s e q u e n t i a l l o g i c , w i th s y n c h r o n o u s r e s e t
80 a lways @(posedge c l k) b e g i n
81 i f (r s t == 1 ’ b1) b e g i n
82 h i t <= 0 ;
83 c y c l e <= 0 ;
84 done <= 0 ;
85 l oop <= 0 ;
86

87 v a l i d B i t s <= 0 ;
88 f o r (i = 0 ; i < 512 ; i = i +1) b e g i n
89 t a g s [i] <= 0 ;
90 end
91 f o r (i = 0 ; i < 128 ; i = i +1) b e g i n
92 f i r s t I n B l o c k [i] <= 0 ;
93 end
94 end
95

57

96 e l s e i f (r e q u e s t == 1 ’ b1) b e g i n
97 l oop = loop + 1 ;
98 i f (l oop == 1)
99 done = 1 ;

100 e l s e
101 done = 0 ;
102 /
103 / / compute h i t and c y c l e
104 i n d e x = add r [1 2 : 6] ;
105 t a g = add r [3 1 : 1 3] ;
106 / / g e t t h e t a g s o f a s e t , g e t T a g s
107 t 0 = t a g s [i n d e x ∗ 4 + 0] ;
108 t 1 = t a g s [i n d e x ∗ 4 + 1] ;
109 t 2 = t a g s [i n d e x ∗ 4 + 2] ;
110 t 3 = t a g s [i n d e x ∗ 4 + 3] ;
111

112 / / g e t t h e v a l i d b i t s o f a s e t , g e t V a l i d B i t s
113 v0 = v a l i d B i t s [i n d e x ∗ 4 + 0] ;
114 v1 = v a l i d B i t s [i n d e x ∗ 4 + 1] ;
115 v2 = v a l i d B i t s [i n d e x ∗ 4 + 2] ;
116 v3 = v a l i d B i t s [i n d e x ∗ 4 + 3] ;
117

118 / / j u d g e whe the r i t i s a cache h i t
119 h i t 0 = (v0 == 1 ’ b1 && t a g == t 0) ? 1 ’ b1 : 1 ’ b0 ;
120 h i t 1 = (v1 == 1 ’ b1 && t a g == t 1) ? 1 ’ b1 : 1 ’ b0 ;
121 h i t 2 = (v2 == 1 ’ b1 && t a g == t 2) ? 1 ’ b1 : 1 ’ b0 ;
122 h i t 3 = (v3 == 1 ’ b1 && t a g == t 3) ? 1 ’ b1 : 1 ’ b0 ;
123

124 h i t = h i t 0 | h i t 1 | h i t 2 | h i t 3 ;
125

126 c a s e ({ read , h i t })
127 2 ’ b00 : / / w r i t e miss
128 c y c l e = 4 ;
129 2 ’ b01 : / / w r i t e h i t
130 c y c l e = 3 ;
131 2 ’ b10 : / / r e a d miss
132 c y c l e = 2 ;
133 2 ’ b11 : / / r e a d h i t
134 c y c l e = 1 ;
135 d e f a u l t :
136 c y c l e = 0 ;
137 e n d c a s e
138 /
139

140 /
141 / / d e c i d e t h e n e x t s t a t u s o f t h e cache
142 n e x t v a l i d B i t s = v a l i d B i t s ;
143 f o r (i = 0 ; i < 512 ; i = i +1) b e g i n
144 n e x t t a g s [i] = t a g s [i] ;
145 end
146 f o r (i = 0 ; i < 128 ; i = i +1) b e g i n
147 n e x t f i r s t I n B l o c k [i] = f i r s t I n B l o c k [i] ;
148 end
149

150 i f (h i t == 0 && r e q u e s t == 1) b e g i n
151 s e t V a l i d B i t s [0] = v0 ;

58 Appendix A. Verilog Code for Cache Module

152 s e t V a l i d B i t s [1] = v1 ;
153 s e t V a l i d B i t s [2] = v2 ;
154 s e t V a l i d B i t s [3] = v3 ;
155

156 / / i f t h e r e i s empty b l o c k i n t h e cache s e t ,
157 / / f i l l them f i r s t
158 f o r (i = 0 , j = 0 ; i != 4 && j != 1 ; i = i + 1)

b e g i n
159 i f (s e t V a l i d B i t s [i] == 1 ’ b0) b e g i n
160 n e x t v a l i d B i t s [add r [1 2 : 6] ∗ 4 + i] = 1 ’ b1 ;
161 n e x t t a g s [i n d e x ∗ 4 + i] = add r [3 1 : 1 3] ;
162 j = 1 ;
163 end
164 end
165

166 / / i f a l l b l o c k s a r e f i l l e d and no t a g matches ,
167 / / needs t o f i n d one t o r e p l a c e
168 i f (j == 0) b e g i n
169 / / g e t t h e number o f t h e f i r s t comming−i n
170 / / b l o c k f o r s e t add r [1 2 : 6]
171 y = f i r s t I n B l o c k [i n d e x] ;
172 n e x t t a g s [i n d e x ∗ 4 + y] = add r [3 1 : 1 3] ;
173

174 / / u p d a t e f i r s t I n B l o c k
175 i f (y == 3) b e g i n
176 n e x t f i r s t I n B l o c k [i n d e x] = 2 ’ b00 ;
177 end
178 e l s e b e g i n
179 n e x t f i r s t I n B l o c k [i n d e x] = y + 1 ;
180 end
181 end
182 end
183 /
184

185 /
186 / / u p d a t e t h e s t a t u s o f cache
187 v a l i d B i t s = n e x t v a l i d B i t s ;
188 f o r (i = 0 ; i < 512 ; i = i +1) b e g i n
189 t a g s [i] = n e x t t a g s [i] ;
190 end
191 f o r (i = 0 ; i < 128 ; i = i +1) b e g i n
192 f i r s t I n B l o c k [i] = n e x t f i r s t I n B l o c k [i] ;
193 end
194 /
195 end
196 e l s e b e g i n
197 / / i f r e q u e s t i s 0 , s e t s o u t p u t t o 0
198 / / b e c a u s e done i s 0 as wel l ,
199 / / h i t (0) an c y c l e (0) w i l l n o t be r e a d from PS
200 h i t <= 0 ;
201 c y c l e <= 0 ;
202 done <= 0 ;
203 l oop <= 0 ;
204 end
205 end

59

206 endmodule

cache.v

Appendix B

Test Bench Code for Cache Module

1 ‘ t i m e s c a l e 1 ns / 1 ps
2

3 module c a c h e t b () ;
4

5 r e g [3 1 : 0] add r ;
6 r e g r e q u e s t ;
7 r e g c l k ;
8 r e g r s t ;
9 r e g r e a d ;

10 wire h i t ;
11 wire [7 : 0] c y c l e ;
12 wire done ;
13

14 cache DUT(addr , read , r e q u e s t , h i t , c y c l e , done , c lk , r s t) ;
15

16 i n i t i a l b e g i n
17 r s t = 1 ;
18 c l k = 0 ;
19 add r = 0 ;
20 r e q u e s t = 0 ;
21 r e a d = 0 ;
22

23 #6
24 r s t = 0 ;
25

26 / / Demo t e s t s e t ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
27 #9
28 add r = 32 ’ b0000000000000000000 0000100 000001 ;
29 r e q u e s t = 1 ;
30 r e a d = 1 ;
31 / / 1 , r e a d miss
32 / / c y c l e = 2
33

34 #20
35 r e q u e s t = 0 ;
36

37 #10
38 add r = 32 ’ b0000000000000000000 0000100 000010 ;
39 r e q u e s t = 1 ;

61

62 Appendix B. Test Bench Code for Cache Module

40 r e a d = 1 ;
41 / / 2 , r e a d h i t
42 / / c y c l e = 1
43

44 #20
45 r e q u e s t = 0 ;
46

47 #10
48 add r = 32 ’ b0000000000000010000 0000100 000001 ;
49 r e q u e s t = 1 ;
50 r e a d = 0 ;
51 / / 3 , w r i t e miss
52 / / c y c l e = 4
53

54 #20
55 r e q u e s t = 0 ;
56

57 #10
58 add r = 32 ’ b0000000000000010000 0000100 000000 ;
59 r e q u e s t = 1 ;
60 r e a d = 0 ;
61 / / 4 , w r i t e h i t
62 / / c y c l e = 3
63

64 #20
65 r e q u e s t = 0 ;
66

67 #15 $ f i n i s h ;
68 / / Demo t e s t s e t end ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
69 end
70

71 a lways
72 #5 c l k = ! c l k ;
73 endmodule

cache tb.v

Appendix C

Software Cache vs. Hardware Cache

1 # i n c l u d e < s t d i n t . h>
2 # i n c l u d e <a s s e r t . h>
3 # i n c l u d e <d i r e n t . h>
4 # i n c l u d e < f c n t l . h>
5 # i n c l u d e <s t d i o . h>
6 # i n c l u d e < s t d l i b . h>
7 # i n c l u d e < s t r i n g . h>
8 # i n c l u d e <s y s / mman . h>
9 # i n c l u d e <u n i s t d . h>

10 # i n c l u d e <s t d d e f . h>
11 # i n c l u d e <t ime . h>
12

13 / / c ache s i z e : 32KB
14 / / c ache l i n e s i z e : 64B
15 / / c ache a s s o c i a t i v i t y : 4−way
16 / / c ache r e p l a c e m e n t p o l i c y : FIFO
17 / / c ache w r i t e p o l i c y : w r i t e−t h r o u g h and no−w r i t e a l l o c a t e
18

19 / / memory a d d r e s s s i z e : 32 b i t s
20 / / c ache t a g s i z e : 19 b i t s : numBlocks : 512
21 / / c ache i n d e x s i z e : 7 b i t s : numSets : 128
22 / / c ache o f f s e t s i z e : 6 b i t s
23

24 / / p e n a l t y
25 / / r e a d h i t : 1 c y c l e
26 / / r e a d miss : 2 c y c l e s
27 / / w r i t e h i t : 3 c y c l e s
28 / / w r i t e miss : 4 c y c l e s
29

30 # d e f i n e NUM REQUESTS 1000000
31

32 # d e f i n e MAP SIZE 4096UL
33 # d e f i n e MAP MASK (MAP SIZE − 1)
34 # d e f i n e ADDER BASE ADDR 0 x43c00000
35

36 vo id ∗ g e t v a d d r (i n t p h y s a d d r)
37 {
38 vo id ∗mapped base ;
39 i n t memfd ;

63

64 Appendix C. Software Cache vs. Hardware Cache

40

41 vo id ∗mapped dev base ;
42 o f f t d e v b a s e = p h y s a d d r ;
43

44 / / t o open t h i s , t h e program needs t o run as r o o t
45 memfd = open (” / dev /mem” , O RDWR | O SYNC) ;
46 i f (memfd == −1) {
47 p r i n t f (” c a n t open / dev /mem. \n ”) ;
48 e x i t (0) ;
49 }
50

51 / / map one page of memory i n t o u s e r s p a c e such t h a t t h e
52 / / d e v i c e i s i n t h a t page , b u t i t may n o t
53 / / be a t t h e s t a r t o f t h e page
54

55 mapped base = mmap(0 , MAP SIZE , PROT READ | PROT WRITE ,
MAP SHARED, memfd , d e v b a s e & ˜MAP MASK) ;

56 i f (mapped base == (vo id ∗) − 1) {
57 p r i n t f (” c a n t open t h e memory t o u s e r s p a c e . \n ”) ;
58 e x i t (0) ;
59 }
60

61 / / g e t t h e a d d r e s s o f t h e d e v i c e i n u s e r s p a c e which
62 / / w i l l be an o f f s e t from t h e base t h a t was mapped
63 / / a s memeory i s mapped a t t h e s t a r t o f a page
64

65 mapped dev base = mapped base + (d e v b a s e & MAP MASK) ;
66 r e t u r n mapped dev base ;
67 }
68

69 / / s t r u c t u r e o f cache l i n e
70 t y p e d e f s t r u c t {
71 i n t v a l i d B i t ;
72 i n t t a g ;
73 } CacheLine ;
74

75 / / s t r u c t u r e o f cache
76 t y p e d e f s t r u c t {
77 CacheLine b l o c k s [5 1 2] ;
78 i n t f i r s t I n B l o c k [1 2 8] ;
79 } Cache ;
80

81 i n t memoryAccess so f tware (i n t addr , i n t read , Cache∗ cache) {
82 i n t i n d e x = addr >> 6 & 0 x0000007f ;
83 / / l o g i c a l l e f t s h i t , b i t s v a c a t e d a r e f i l l e d wi th z e r o s
84 i n t t a g = add r >> 1 3 ;
85 i n t h i t = 0 ;
86 i n t c y c l e = 0 ;
87

88 i n t i ;
89 / / check i f i t h i t s o r m i s s e s
90 f o r (i = 0 ; i < 4 ; i ++) {
91 i f (cache−>b l o c k s [i n d e x ∗ 4 + i] . t a g == t a g && cache−>b l o c k s [

i n d e x ∗ 4 + i] . v a l i d B i t == 1) {
92 h i t = 1 ;
93 b r e a k ;

65

94 }
95 }
96

97 / / c ache miss , u p d a t e cache
98 i f (h i t == 0) {
99 i n t b l o c k T o F i l l = 0 ;

100 i f (cache−>f i r s t I n B l o c k [i n d e x] == 3)
101 b l o c k T o F i l l = 0 ;
102 e l s e
103 b l o c k T o F i l l = cache−>f i r s t I n B l o c k [i n d e x] + 1 ;
104 cache−>b l o c k s [i n d e x ∗ 4 + b l o c k T o F i l l] . t a g = t a g ;
105 cache−>b l o c k s [i n d e x ∗ 4 + b l o c k T o F i l l] . v a l i d B i t = 1 ;
106

107 cache−>f i r s t I n B l o c k [i n d e x] = b l o c k T o F i l l ;
108 }
109

110 / / c a l c u l a t e c y c l e c o u n t
111 i f (h i t == 0 && r e a d == 1)
112 c y c l e = 2 ;
113 e l s e i f (h i t == 1 && r e a d == 1)
114 c y c l e = 1 ;
115 e l s e i f (h i t == 0 && r e a d == 0)
116 c y c l e = 4 ;
117 e l s e
118 c y c l e = 3 ;
119

120 r e t u r n c y c l e ;
121 }
122

123 i n t main ()
124 {
125 / / s t a t i s t i c s
126 i n t numReadHit = 0 ;
127 i n t numReadMiss = 0 ;
128 i n t numWri teHi t = 0 ;
129 i n t numWriteMiss = 0 ;
130

131 i n t numReadHi t harware = 0 ;
132 i n t numReadMiss hardware = 0 ;
133 i n t numWri t eHi t ha rdware = 0 ;
134 i n t numWri teMiss hardware = 0 ;
135

136 / / f o r random number g e n e r a t i o n
137 s r a n d (t ime (NULL)) ;
138

139 Cache cache ;
140

141 / / i n i t i a l i s e s o f t w a r e cache
142 i n t i ;
143 f o r (i = 0 ; i < 512 ; i ++) {
144 cache . b l o c k s [i] . v a l i d B i t = 0 ;
145 cache . b l o c k s [i] . t a g = 0 ;
146 i f (i < 128)
147 cache . f i r s t I n B l o c k [i] = −1;
148 / / p r i n t f (”%d t a g : %d , v a l i d b i t : %d\n ” , i , cache . b l o c k s [i] . t ag ,

cache . b l o c k s [i] . v a l i d B i t) ;

66 Appendix C. Software Cache vs. Hardware Cache

149 }
150

151 / / i n i t i a l i s e AXI s l a v e
152 / / s l v r e g 1 <= s l v r e g 0 + s l v r e g 2
153 i n t ∗ d e v b a s e v a d d r = (i n t ∗) g e t v a d d r (ADDER BASE ADDR) ;
154 i n t ∗ r e q u e s t = d e v b a s e v a d d r ; / / s l v r e g 0
155 i n t ∗ c y c l e = d e v b a s e v a d d r + 1 ; / / s l v r e g 1
156 i n t ∗ add r = d e v b a s e v a d d r + 2 ; / / s l v r e g 2
157 i n t ∗ r e a d = d e v b a s e v a d d r + 3 ; / / s l v r e g 3
158 ∗ add r = 0 ;
159 ∗ r e a d = 0 ;
160 ∗ r e q u e s t = 0 ;
161

162 / / g e n e r a t e r e q u e s t s
163 i n t a d d r s [NUM REQUESTS] ;
164 i n t r e a d s [NUM REQUESTS] ;
165 f o r (i = 0 ; i < NUM REQUESTS; i ++) {
166 a d d r s [i] = rand () ;
167 r e a d s [i] = rand () %2;
168 }
169

170 / / t ime s o f t w a r e memory a c c e s s s i m u l a t i o n
171 c l o c k t b e g i n s o f t = c l o c k () ;
172 f o r (i = 0 ; i < NUM REQUESTS; i ++) {
173 i n t c y c l e s o f t = memoryAccess so f tware (a d d r s [i] , r e a d s [i] , &

cache) ;
174 /∗ ∗∗∗∗∗∗ For V a l i d a t i o n ∗∗∗∗∗∗ ∗ /
175 / / s w i t c h (c y c l e s o f t) {
176 / / c a s e 1 :
177 / / numReadHit ++;
178 / / b r e a k ;
179 / / c a s e 2 :
180 / / numReadMiss ++;
181 / / b r e a k ;
182 / / c a s e 3 :
183 / / numWri teHi t ++;
184 / / b r e a k ;
185 / / c a s e 4 :
186 / / numWriteMiss ++;
187 / / b r e a k ;
188 / / }
189 /∗ ∗∗∗∗∗∗∗∗∗∗ End ∗∗∗∗∗∗∗∗∗∗ ∗ /
190 }
191 c l o c k t e n d s o f t = c l o c k () ;
192 do ub l e t i m e s p e n t s o f t = (d ou b l e) (e n d s o f t − b e g i n s o f t) /

CLOCKS PER SEC ;
193 p r i n t f (”%f s \n ” , t i m e s p e n t s o f t) ;
194

195 / / t ime hardware memory a c c e s s s i m u l a t i o n
196 c l o c k t b e g i n h a r d = c l o c k () ;
197 f o r (i = 0 ; i < NUM REQUESTS; i ++) {
198 ∗ add r = a d d r s [i] ;
199 ∗ r e a d = r e a d s [i] ;
200 ∗ r e q u e s t = 1 ;
201 ∗ r e q u e s t = 0 ;
202 /∗ ∗∗∗∗∗∗ For V a l i d a t i o n ∗∗∗∗∗∗ ∗ /

67

203 / / s w i t c h (∗ c y c l e) {
204 / / c a s e 1 :
205 / / numReadHi t harware ++;
206 / / b r e a k ;
207 / / c a s e 2 :
208 / / numReadMiss hardware ++;
209 / / b r e a k ;
210 / / c a s e 3 :
211 / / numWri t eHi t ha rdware ++;
212 / / b r e a k ;
213 / / c a s e 4 :
214 / / numWri teMiss hardware ++;
215 / / b r e a k ;
216 / / }
217 /∗ ∗∗∗∗∗∗∗∗∗∗ End ∗∗∗∗∗∗∗∗∗∗ ∗ /
218 }
219 c l o c k t e n d h a r d = c l o c k () ;
220 do ub l e t i m e s p e n t h a r d = (do ub l e) (e n d h a r d − b e g i n h a r d) /

CLOCKS PER SEC ;
221 p r i n t f (”%f s \n ” , t i m e s p e n t h a r d) ;
222

223 /∗ ∗∗∗∗∗∗ For V a l i d a t i o n ∗∗∗∗∗∗ ∗ /
224 / / p r i n t f (” s o f t w a r e cache r e s u l t s :\ n ”) ;
225 / / p r i n t f (” number o f r e a d h i t : %d\n ” , numReadHit) ;
226 / / p r i n t f (” number o f r e a d miss : %d\n ” , numReadMiss) ;
227 / / p r i n t f (” number o f w r i t e h i t : %d\n ” , numWri teHi t) ;
228 / / p r i n t f (” number o f w r i t e miss : %d\n ” , numWriteMiss) ;
229 / /
230 / / p r i n t f (” ha rdware cache r e s u l t s :\ n ”) ;
231 / / p r i n t f (” number o f r e a d h i t : %d\n ” , numReadHi t harware) ;
232 / / p r i n t f (” number o f r e a d miss : %d\n ” , numReadMiss hardware) ;
233 / / p r i n t f (” number o f w r i t e h i t : %d\n ” , numWri t eHi t ha rdware) ;
234 / / p r i n t f (” number o f w r i t e miss : %d\n ” , numWri teMiss hardware) ;
235 /∗ ∗∗∗∗∗∗∗∗∗∗ End ∗∗∗∗∗∗∗∗∗∗ ∗ /
236

237 r e t u r n 0 ;
238 }

SoftwareVsHardware.c

Bibliography

[AB86] Thomas S Anantharaman and Roberto Bisiani. A hardware accelerator
for speech recognition algorithms. ACM SIGARCH Computer Architec-
ture News, 14(2):216–223, 1986.

[ALE02] Todd Austin, Eric Larson, and Dan Ernst. SimpleScalar: An infrastruc-
ture for computer system modeling. Computer, 35(2):59–67, 2002.

[Amd67] Gene M Amdahl. Validity of the single processor approach to achieving
large scale computing capabilities. In Proceedings of the April 18-20,
1967, spring joint computer conference, pages 483–485. ACM, 1967.

[ARM04] ARM. AMBA AXI Protocol. Specification v1.0, ARM, 2004.

[BFT10] Igor Böhm, Björn Franke, and Nigel Topham. Cycle-accurate perfor-
mance modelling in an ultra-fast just-in-time dynamic binary translation
instruction set simulator. In Embedded Computer Systems (SAMOS),
2010 International Conference on, pages 1–10. IEEE, 2010.

[BRV89] Patrice Bertin, Didier Roncin, and Jean Vuillemin. Introduction to pro-
grammable active memories. 1989.

[CCL05] Jian-Wen Chen, Cheng-Ru Chang, and Youn-Long Lin. A hardware
accelerator for context-based adaptive binary arithmetic decoding in H.
264/AVC. In Circuits and Systems, 2005. ISCAS 2005. IEEE Interna-
tional Symposium on, pages 4525–4528. IEEE, 2005.

[CSS+06] Derek Chiou, Huzefa Sunjeliwala, Dam Sunwoo, John Xu, and Nikhil
Patil. FPGA-based fast, cycle-accurate, full-system simulators. In Pro-
ceedings of the second Workshop on Architecture Research using FPGA
Platforms, held in conjunction with HPCA-12, Austin, TX, 2006.

[Den05] Peter J Denning. The locality principle. Communications of the ACM,
48(7):19–24, 2005.

[DO04] James P Durbano and Fernando E Ortiz. FPGA-based acceleration of
the 3D finite-difference time-domain method. In Field-Programmable
Custom Computing Machines, 2004. FCCM 2004. 12th Annual IEEE
Symposium on, pages 156–163. IEEE, 2004.

69

70 Bibliography

[Fle14] Shane Fleming. Creating a simple AXI slave adder and interfacing
with the Zynq. https://www.youtube.com/watch?v=XtvVfjIm9Xw,
2014. [Youtube Video; Accessed 1-April-2017].

[Fra08] Björn Franke. Fast cycle-approximate instruction set simulation. In Pro-
ceedings of the 11th international workshop on Software & compilers
for embedded systems, pages 69–78. ACM, 2008.

[Gri14] Rich Griffin. Designing a Custom AXI-lite Slave Peripheral. Technical
Report Version 1.0, SILICA, 2014.

[HHKC12] Feng-Cheng Huang, Shi-Yu Huang, Ji-Wei Ker, and Yung-Chang Chen.
High-performance SIFT hardware accelerator for real-time image fea-
ture extraction. IEEE Transactions on Circuits and Systems for Video
Technology, 22(3):340–351, 2012.

[Insa] Institute for Computing Systems Architecture, The University of Ed-
inburgh. ArcSim Instruction Set Simulator. http://groups.inf.
ed.ac.uk/pasta/tools_arcsim.html. [Online; Accessed 3-April-
2017].

[Insb] Institute for Computing Systems Architecture, The University of Edin-
burgh. Encore Embedded Processor. http://groups.inf.ed.ac.uk/
pasta/hw_encore.html. [Online; Accessed 3-April-2017].

[Kri01] S Krishnaprasad. Uses and abuses of amdahl’s law. Journal of Comput-
ing Sciences in colleges, 17(2):288–293, 2001.

[KVBW+12] Asif Khan, Muralidaran Vijayaraghavan, Silas Boyd-Wickizer, et al.
Fast and cycle-accurate modeling of a multicore processor. In Perfor-
mance Analysis of Systems and Software (ISPASS), 2012 IEEE Interna-
tional Symposium on, pages 178–187. IEEE, 2012.

[Pat11] David A Patterson. Computer architecture: a quantitative approach.
Elsevier, 2011.

[PWKR02] Mario Porrmann, Ulf Witkowski, Heiko Kalte, and Ulrich Ruckert.
Implementation of artificial neural networks on a reconfigurable hard-
ware accelerator. In Parallel, Distributed and Network-based Process-
ing, 2002. Proceedings. 10th Euromicro Workshop on, pages 243–250.
IEEE, 2002.

[Row94] James A Rowson. Hardware/software co-simulation. In Design Au-
tomation, 1994. 31st Conference on, pages 439–440. IEEE, 1994.

[Sad14a] Mohammadsadegh Sadri. Brief overview of Zynq architecture.
https://www.youtube.com/watch?v=Jpi4_Acyqnw&list=
PLQGDgb5p8ClhvSztd-vHeBr4fo3EXfr85&index=13, 2014.
[Youtube Video; Accessed 1-April-2017].

https://www.youtube.com/watch?v=XtvVfjIm9Xw
http://groups.inf.ed.ac.uk/pasta/tools_arcsim.html
http://groups.inf.ed.ac.uk/pasta/tools_arcsim.html
http://groups.inf.ed.ac.uk/pasta/hw_encore.html
http://groups.inf.ed.ac.uk/pasta/hw_encore.html
https://www.youtube.com/watch?v=Jpi4_Acyqnw&list=PLQGDgb5p8ClhvSztd-vHeBr4fo3EXfr85&index=13
https://www.youtube.com/watch?v=Jpi4_Acyqnw&list=PLQGDgb5p8ClhvSztd-vHeBr4fo3EXfr85&index=13

Bibliography 71

[Sad14b] Mohammadsadegh Sadri. Zynq AXI interfaces part 1 (lesson
3). https://www.youtube.com/watch?v=nAycgPUOiAI&t=1213s,
2014. [Youtube Video; Accessed 1-April-2017].

[Sad15] Mohammadsadegh Sadri. Creating custom AXI slave interfaces part 1
(lesson 6). https://www.youtube.com/watch?v=meQcwzC4Vtk&t=
332s, 2015. [Youtube Video; Accessed 1-April-2017].

[SBV91] Mark Shand, Patrice Bertin, and Jean Vuillemin. Hardware speedups
in long integer multiplication. ACM SIGARCH Computer Architecture
News, 19(1):106–113, 1991.

[SGGS98] Abraham Silberschatz, Peter B Galvin, Greg Gagne, and A Silberschatz.
Operating system concepts, volume 4. Addison-wesley Reading, 1998.

[SP05] K Sridharan and TK Priya. The design of a hardware accelera-
tor for real-time complete visibility graph construction and efficient
FPGA implementation. IEEE Transactions on Industrial Electronics,
52(4):1185–1187, 2005.

[Tal14] Deepak Kumar Tala. Verilog Tutorial. ASIC World, 2014.

[TJ07] Nigel Topham and Daniel Jones. High speed CPU simulation using
JIT binary translation. In Workshop on Modeling, Benchmarking and
Simulation (MOBS), 2007.

[Tri11] Yatri Trivedi. How to set up static DHCP so your computer’s IP
address doesn’t change. http://www.howtogeek.com/69612/
how-to-set-up-static-dhcp-on-your-dd-wrt-router/, 2011.
[Online; Accessed 3-April-2017].

[Tri16] Yatri Trivedi. Forward ports on router. http://www.howtogeek.com/
66214/how-to-forward-ports-on-your-router/, 2016. [Online;
Accessed 3-April-2017].

[VPNH10] Jason Villarreal, Adrian Park, Walid Najjar, and Robert Halstead. De-
signing modular hardware accelerators in C with ROCCC 2.0. In Field-
Programmable Custom Computing Machines (FCCM), 2010 18th IEEE
Annual International Symposium on, pages 127–134. IEEE, 2010.

[Wik15] Wikipedia. Instruction set simulator — Wikipedia, The Free
Encyclopedia. https://en.wikipedia.org/w/index.php?title=
Instruction_set_simulator&oldid=656736749, 2015. [Online;
Accessed 3-April-2017].

[Wik17] Wikipedia. Computer architecture simulator — Wikipedia, The Free
Encyclopedia. https://en.wikipedia.org/w/index.php?title=
Computer_architecture_simulator&oldid=764006551, 2017.
[Online; Accessed 3-April-2017].

[Xil16a] Xilinx. Zynq-7000 All Programmable SoC Overview. Product Specifi-
cation DS190 (v1.10), Xilinx, 2016.

https://www.youtube.com/watch?v=nAycgPUOiAI&t=1213s
https://www.youtube.com/watch?v=meQcwzC4Vtk&t=332s
https://www.youtube.com/watch?v=meQcwzC4Vtk&t=332s
http://www.howtogeek.com/69612/how-to-set-up-static-dhcp-on-your-dd-wrt-router/
http://www.howtogeek.com/69612/how-to-set-up-static-dhcp-on-your-dd-wrt-router/
http://www.howtogeek.com/66214/how-to-forward-ports-on-your-router/
http://www.howtogeek.com/66214/how-to-forward-ports-on-your-router/
https://en.wikipedia.org/w/index.php?title=Instruction_set_simulator&oldid=656736749
https://en.wikipedia.org/w/index.php?title=Instruction_set_simulator&oldid=656736749
https://en.wikipedia.org/w/index.php?title=Computer_architecture_simulator&oldid=764006551
https://en.wikipedia.org/w/index.php?title=Computer_architecture_simulator&oldid=764006551

72 Bibliography

[Xil16b] Xilinx. Zynq-7000 All Programmable SoC Technical Reference Man-
ual. Technical Reference Manual UG585 (v1.11), Xilinx, 2016.

	Introduction
	Overview
	Motivation
	Contributions
	Outline

	Evaluation of Previous Work
	FPGA-based Simulation
	Hardware Accelerator Advantages and Limits
	Other Related Literature Review

	Background
	ArcSim
	Cache Architecture
	Cache Organization
	Cache Addressing
	Replacement Policy
	Write Policy

	Zynq-7000 All Programmable SoC
	Zynq-7000 Family Architecture
	PS-PL Interfaces
	Another Overview of This Project

	AMBA AXI Protocol
	AXI Architecture
	Two-way Handshake Mechanism

	System Setup
	Boot Linux on ARM Cortex-A9 CPUs
	SSH Across Different Networks
	Mount Filesystem

	Implementation
	Cache in Verilog
	Cache Design
	Cache Implementation

	Create Custom AXI Slave Peripheral
	Call Hardware Cache Model From Software Driver

	Test and Evaluation
	Time Types for Benchmarking Program
	Evaluation of AXI Interface Time Cost
	Method
	Results
	Discussion

	Software Cache Simulation vs. Hybrid Cache Simulation
	Validation
	Results
	Discussion

	Prediction on Potential Speed-up for ArcSim
	Implementation
	Results
	Discussion

	Conclusion
	Summary
	Critical Analysis
	Difficulties Handled
	Possible Improvement

	Appendix Verilog Code for Cache Module
	Appendix Test Bench Code for Cache Module
	Appendix Software Cache vs. Hardware Cache
	Bibliography

